Cargando…
Role of Molecular Recognition in l-Cystine Crystal Growth Inhibition
[Image: see text] l-Cystine kidney stones—aggregates of single crystals of the hexagonal form of l-cystine—afflict more than 20 000 individuals in the United States alone. Current therapies are often ineffective and produce adverse side effects. Recognizing that the growth of l-cystine crystals is a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722434/ https://www.ncbi.nlm.nih.gov/pubmed/29234242 http://dx.doi.org/10.1021/acs.cgd.7b00236 |
_version_ | 1783285013521891328 |
---|---|
author | Poloni, Laura N. Zhu, Zina Garcia-Vázquez, Nelson Yu, Anthony C. Connors, David M. Hu, Longqin Sahota, Amrik Ward, Michael D. Shtukenberg, Alexander G. |
author_facet | Poloni, Laura N. Zhu, Zina Garcia-Vázquez, Nelson Yu, Anthony C. Connors, David M. Hu, Longqin Sahota, Amrik Ward, Michael D. Shtukenberg, Alexander G. |
author_sort | Poloni, Laura N. |
collection | PubMed |
description | [Image: see text] l-Cystine kidney stones—aggregates of single crystals of the hexagonal form of l-cystine—afflict more than 20 000 individuals in the United States alone. Current therapies are often ineffective and produce adverse side effects. Recognizing that the growth of l-cystine crystals is a critical step in stone pathogenesis, real-time in situ atomic force microscopy of growth on the (0001) face of l-cystine crystals and measurements of crystal growth anisotropy were performed in the presence of prospective inhibitors drawn from a 31-member library. The most effective molecular imposters for crystal growth inhibition were l-cystine mimics (aka molecular imposters), particularly l-cystine diesters and diamides, for which a kinetic analysis revealed a common inhibition mechanism consistent with Cabrera–Vermilyea step pinning. The amount of inhibitor incorporated by l-cystine crystals, estimated from kinetic data, suggests that imposter binding to the {0001} face is less probable than binding of l-cystine solute molecules, whereas imposter binding to {101̅0} faces is comparable to that of l-cystine molecules. These estimates were corroborated by computational binding energies. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and l-cystine crystal kink sites, and the inhibition of crystal growth. The observations are consistent with the reduction of l-cystine stone burden in mouse models by the more effective inhibitors, thereby articulating a strategy for stone prevention based on molecular design. |
format | Online Article Text |
id | pubmed-5722434 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-57224342017-12-10 Role of Molecular Recognition in l-Cystine Crystal Growth Inhibition Poloni, Laura N. Zhu, Zina Garcia-Vázquez, Nelson Yu, Anthony C. Connors, David M. Hu, Longqin Sahota, Amrik Ward, Michael D. Shtukenberg, Alexander G. Cryst Growth Des [Image: see text] l-Cystine kidney stones—aggregates of single crystals of the hexagonal form of l-cystine—afflict more than 20 000 individuals in the United States alone. Current therapies are often ineffective and produce adverse side effects. Recognizing that the growth of l-cystine crystals is a critical step in stone pathogenesis, real-time in situ atomic force microscopy of growth on the (0001) face of l-cystine crystals and measurements of crystal growth anisotropy were performed in the presence of prospective inhibitors drawn from a 31-member library. The most effective molecular imposters for crystal growth inhibition were l-cystine mimics (aka molecular imposters), particularly l-cystine diesters and diamides, for which a kinetic analysis revealed a common inhibition mechanism consistent with Cabrera–Vermilyea step pinning. The amount of inhibitor incorporated by l-cystine crystals, estimated from kinetic data, suggests that imposter binding to the {0001} face is less probable than binding of l-cystine solute molecules, whereas imposter binding to {101̅0} faces is comparable to that of l-cystine molecules. These estimates were corroborated by computational binding energies. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and l-cystine crystal kink sites, and the inhibition of crystal growth. The observations are consistent with the reduction of l-cystine stone burden in mouse models by the more effective inhibitors, thereby articulating a strategy for stone prevention based on molecular design. American Chemical Society 2017-04-13 2017-05-03 /pmc/articles/PMC5722434/ /pubmed/29234242 http://dx.doi.org/10.1021/acs.cgd.7b00236 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Poloni, Laura N. Zhu, Zina Garcia-Vázquez, Nelson Yu, Anthony C. Connors, David M. Hu, Longqin Sahota, Amrik Ward, Michael D. Shtukenberg, Alexander G. Role of Molecular Recognition in l-Cystine Crystal Growth Inhibition |
title | Role of Molecular Recognition in l-Cystine
Crystal Growth Inhibition |
title_full | Role of Molecular Recognition in l-Cystine
Crystal Growth Inhibition |
title_fullStr | Role of Molecular Recognition in l-Cystine
Crystal Growth Inhibition |
title_full_unstemmed | Role of Molecular Recognition in l-Cystine
Crystal Growth Inhibition |
title_short | Role of Molecular Recognition in l-Cystine
Crystal Growth Inhibition |
title_sort | role of molecular recognition in l-cystine
crystal growth inhibition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722434/ https://www.ncbi.nlm.nih.gov/pubmed/29234242 http://dx.doi.org/10.1021/acs.cgd.7b00236 |
work_keys_str_mv | AT polonilauran roleofmolecularrecognitioninlcystinecrystalgrowthinhibition AT zhuzina roleofmolecularrecognitioninlcystinecrystalgrowthinhibition AT garciavazqueznelson roleofmolecularrecognitioninlcystinecrystalgrowthinhibition AT yuanthonyc roleofmolecularrecognitioninlcystinecrystalgrowthinhibition AT connorsdavidm roleofmolecularrecognitioninlcystinecrystalgrowthinhibition AT hulongqin roleofmolecularrecognitioninlcystinecrystalgrowthinhibition AT sahotaamrik roleofmolecularrecognitioninlcystinecrystalgrowthinhibition AT wardmichaeld roleofmolecularrecognitioninlcystinecrystalgrowthinhibition AT shtukenbergalexanderg roleofmolecularrecognitioninlcystinecrystalgrowthinhibition |