Cargando…

Riemerella anatipestifer M949_0459 gene is responsible for the bacterial resistance to tigecycline

Based on its important role in last-line therapeutics against multidrug-resistant bacteria, tigecycline has been increasingly important in treating infections. However, mounting reports on tigecycline-resistant bacterial strains isolated from different sources are of concern, and molecular mechanism...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Tao, Shan, Min, He, Jing, Wang, Xiaolan, Wang, Shaohui, Tian, Mingxing, Qi, Jingjing, Luo, Tingrong, Shi, Yonghong, Ding, Chan, Yu, Shengqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722508/
https://www.ncbi.nlm.nih.gov/pubmed/29228556
http://dx.doi.org/10.18632/oncotarget.19633
Descripción
Sumario:Based on its important role in last-line therapeutics against multidrug-resistant bacteria, tigecycline has been increasingly important in treating infections. However, mounting reports on tigecycline-resistant bacterial strains isolated from different sources are of concern, and molecular mechanisms regarding tigecycline resistance are poorly understood. Riemerella anatipestifer is a Gram-negative, non-motile, non-spore-forming, rod-shaped bacterium, which causes fibrinous pericarditis, perihepatitis, and meningitis in infected ducks. We previously constructed a random transposon mutant library using Riemerella anatipestifer strain CH3, in present study, we described that Riemerella anatipestifer M949_0459 gene is responsible for the bacterial resistance to tigecycline. Using the minimum inhibitory concentration assay, a mutant strain showed significantly increased (about six-fold) tigecycline susceptibility. Subsequently, the knocked-down gene was identified as M949_0459, a putative flavin adenine dinucleotide-dependent oxidoreductase. To confirm the resistance function, M949_0459 gene was overexpressed in Escherichia coli strain BL21, and the minimum inhibitory concentration analysis showed that the gene product conferred resistance to tigecycline. Additionally, expression of the M949_0459 gene under treatment with tigecycline was measured with quantitative real-time PCR. Results showed that the mRNA expression of M949_0459 gene was elevated under tigecycline treatment with dose range of 1-10 mg/L, and peaked at 4 mg/L. Moreover, two kinds of efflux pump inhibitors, carbonyl cyanide m-chlorophenyl hydrazone and phenylalanine arginyl β-naphthylamide were tested, which showed no function on tigecycline resistance in the strain CH3. Our results may provide insights into molecular mechanisms for chemotherapy in combating Riemerella anatipestifer infections.