Cargando…

Ammonium glycyrrhizin counteracts liver injury caused by lipopolysaccharide/amoxicillin-clavulanate potassium

We treated isolated chicken primary hepatocytes with lipopolysaccharide/amoxicillin clavulanate potassium (LPS/AC) to model liver injury and investigate its underlying mechanisms. We also used this model to assess the cytoprotective effects of compound ammonium glycyrrhizin (CAG) in vitro. LPS/AC-in...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Zugong, Wu, Feng, Tian, Jing, Guo, Xuewen, An, Ran, Guo, Yangyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722527/
https://www.ncbi.nlm.nih.gov/pubmed/29228575
http://dx.doi.org/10.18632/oncotarget.18291
Descripción
Sumario:We treated isolated chicken primary hepatocytes with lipopolysaccharide/amoxicillin clavulanate potassium (LPS/AC) to model liver injury and investigate its underlying mechanisms. We also used this model to assess the cytoprotective effects of compound ammonium glycyrrhizin (CAG) in vitro. LPS/AC-induced injury decreased cell viability and increased the activity of serum aspartate transaminase and alanine transaminase. Levels of superoxide dismutase, glutathione, and glutathione peroxidase were lower than control, while levels of the oxidative product malondialdehyde and reactive oxygen species were higher. Treatment with CAG for 24 h ameliorated these changes. Caspase-3 activity assays and flow cytometry revealed increased apoptosis in the model group. However, apoptosis decreased after CAG treatment, as confirmed by Hoechst 33342 staining. We also observed changes in mitochondrial ultrastructure. Real-time PCR and western blot analyses showed that CAG treatment downregulated LPS/AC-induced RNA expression of caspase-3, caspase-9, bax, cytochrome c, and fas, and upregulated the expression of bcl-2. Mitochondrial cytochrome c was released into the cytosol and the inner mitochondrial membrane potential (ΔΨm) was decreased. Our results highlight CAG as a potential therapeutic agent to counteract LPS/AC-induced liver injury.