Cargando…

Interleukin-17A-promoted MSC2 polarization related with new bone formation of ankylosing spondylitis

It’s still unknown how over-hyperplasia of tissue such like new bone formation (NBF) developed in ankylosing spondylitis (AS). We found low level of IL-17A promoted TLR4+MSC1 polarization with suppressed osteogenic differentiation through JAK2/STAT3 pathway, while high level of IL-17A promoted TLR3+...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Tao, Huang, Yan, Zhang, Chen, Liu, Denghui, Cheng, Chao, Xu, Weidong, Zhang, Xiaoling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722540/
https://www.ncbi.nlm.nih.gov/pubmed/29228588
http://dx.doi.org/10.18632/oncotarget.20823
Descripción
Sumario:It’s still unknown how over-hyperplasia of tissue such like new bone formation (NBF) developed in ankylosing spondylitis (AS). We found low level of IL-17A promoted TLR4+MSC1 polarization with suppressed osteogenic differentiation through JAK2/STAT3 pathway, while high level of IL-17A promoted TLR3+MSC2 polarization with enhanced osteogenic differentiation through WNT10b/RUNX2 pathway. Furthermore, both proteoglycan-induced spondylitis (PGISp) mouse model and AS patients without NBF showed MSC1 polarization, up-regulated JAK2/STAT3 pathway and high level of IL-17A (peripherally, but not locally), but those with NBF showed MSC2 polarization, up-regulated WNT10b/RUNX2 pathway and high expression of IL-17A at local site. Results showed NBF of AS was induced by MSC2 polarization that was promoted by high level of IL-17A, and may be treated by suppressing local MSC2 polarization.