Cargando…
Static and fatigue strength of a novel anatomically contoured implant compared to five current open-wedge high tibial osteotomy plates
BACKGROUND: The purpose of the present study was to compare the mechanical static and fatigue strength of the size 2 osteotomy plate “Activmotion” with the following five other common implants for the treatment of medial knee joint osteoarthritis: the TomoFix small stature, the TomoFix standard, the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722784/ https://www.ncbi.nlm.nih.gov/pubmed/29222607 http://dx.doi.org/10.1186/s40634-017-0115-3 |
_version_ | 1783285071414820864 |
---|---|
author | Diffo Kaze, Arnaud Maas, Stefan Belsey, James Hoffmann, Alexander Pape, Dietrich |
author_facet | Diffo Kaze, Arnaud Maas, Stefan Belsey, James Hoffmann, Alexander Pape, Dietrich |
author_sort | Diffo Kaze, Arnaud |
collection | PubMed |
description | BACKGROUND: The purpose of the present study was to compare the mechanical static and fatigue strength of the size 2 osteotomy plate “Activmotion” with the following five other common implants for the treatment of medial knee joint osteoarthritis: the TomoFix small stature, the TomoFix standard, the Contour Lock, the iBalance and the second generation PEEKPower. METHODS: Six fourth-generation tibial bone composites underwent a medial open-wedge high tibial osteotomy (HTO), according to standard techniques, using size 2 Activmotion osteotomy plates. All bone-implant constructs were subjected to static compression load to failure and load-controlled cyclic fatigue failure testing, according to a previously defined testing protocol. The mechanical stability was investigated by considering different criteria and parameters: maximum forces, the maximum number of loading cycles, stiffness, the permanent plastic deformation of the specimens during the cyclic fatigue tests, and the maximum displacement range in the hysteresis loops of the cyclic loading responses. RESULTS: In each test, all bone-implant constructs with the size 2 Activmotion plate failed with a fracture of the lateral cortex, like with the other five previously tested implants. For the static compression tests the failure occurred in each tested implant above the physiological loading of slow walking (> 2400 N). The load at failure for the Activmotion group was the highest (8200 N). In terms of maximum load and number of cycles performed prior to failure, the size 2 Activmotion plate showed higher results than all the other tested implants except the ContourLock plate. The iBalance implant offered the highest stiffness (3.1 kN/mm) for static loading on the lateral side, while the size 2 Activmotion showed the highest stiffness (4.8 kN/mm) in cyclic loading. CONCLUSIONS: Overall, regarding all of the analysed strength parameters, the size 2 Activmotion plate provided equivalent or higher mechanical stability compared to the previously tested implant. Implants with a metaphyseal slope adapted to the tibia anatomy, and positioned more anteriorly on the proximal medial side of the tibia, should provide good mechanical stability. |
format | Online Article Text |
id | pubmed-5722784 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-57227842017-12-12 Static and fatigue strength of a novel anatomically contoured implant compared to five current open-wedge high tibial osteotomy plates Diffo Kaze, Arnaud Maas, Stefan Belsey, James Hoffmann, Alexander Pape, Dietrich J Exp Orthop Research BACKGROUND: The purpose of the present study was to compare the mechanical static and fatigue strength of the size 2 osteotomy plate “Activmotion” with the following five other common implants for the treatment of medial knee joint osteoarthritis: the TomoFix small stature, the TomoFix standard, the Contour Lock, the iBalance and the second generation PEEKPower. METHODS: Six fourth-generation tibial bone composites underwent a medial open-wedge high tibial osteotomy (HTO), according to standard techniques, using size 2 Activmotion osteotomy plates. All bone-implant constructs were subjected to static compression load to failure and load-controlled cyclic fatigue failure testing, according to a previously defined testing protocol. The mechanical stability was investigated by considering different criteria and parameters: maximum forces, the maximum number of loading cycles, stiffness, the permanent plastic deformation of the specimens during the cyclic fatigue tests, and the maximum displacement range in the hysteresis loops of the cyclic loading responses. RESULTS: In each test, all bone-implant constructs with the size 2 Activmotion plate failed with a fracture of the lateral cortex, like with the other five previously tested implants. For the static compression tests the failure occurred in each tested implant above the physiological loading of slow walking (> 2400 N). The load at failure for the Activmotion group was the highest (8200 N). In terms of maximum load and number of cycles performed prior to failure, the size 2 Activmotion plate showed higher results than all the other tested implants except the ContourLock plate. The iBalance implant offered the highest stiffness (3.1 kN/mm) for static loading on the lateral side, while the size 2 Activmotion showed the highest stiffness (4.8 kN/mm) in cyclic loading. CONCLUSIONS: Overall, regarding all of the analysed strength parameters, the size 2 Activmotion plate provided equivalent or higher mechanical stability compared to the previously tested implant. Implants with a metaphyseal slope adapted to the tibia anatomy, and positioned more anteriorly on the proximal medial side of the tibia, should provide good mechanical stability. Springer Berlin Heidelberg 2017-12-08 /pmc/articles/PMC5722784/ /pubmed/29222607 http://dx.doi.org/10.1186/s40634-017-0115-3 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Diffo Kaze, Arnaud Maas, Stefan Belsey, James Hoffmann, Alexander Pape, Dietrich Static and fatigue strength of a novel anatomically contoured implant compared to five current open-wedge high tibial osteotomy plates |
title | Static and fatigue strength of a novel anatomically contoured implant compared to five current open-wedge high tibial osteotomy plates |
title_full | Static and fatigue strength of a novel anatomically contoured implant compared to five current open-wedge high tibial osteotomy plates |
title_fullStr | Static and fatigue strength of a novel anatomically contoured implant compared to five current open-wedge high tibial osteotomy plates |
title_full_unstemmed | Static and fatigue strength of a novel anatomically contoured implant compared to five current open-wedge high tibial osteotomy plates |
title_short | Static and fatigue strength of a novel anatomically contoured implant compared to five current open-wedge high tibial osteotomy plates |
title_sort | static and fatigue strength of a novel anatomically contoured implant compared to five current open-wedge high tibial osteotomy plates |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722784/ https://www.ncbi.nlm.nih.gov/pubmed/29222607 http://dx.doi.org/10.1186/s40634-017-0115-3 |
work_keys_str_mv | AT diffokazearnaud staticandfatiguestrengthofanovelanatomicallycontouredimplantcomparedtofivecurrentopenwedgehightibialosteotomyplates AT maasstefan staticandfatiguestrengthofanovelanatomicallycontouredimplantcomparedtofivecurrentopenwedgehightibialosteotomyplates AT belseyjames staticandfatiguestrengthofanovelanatomicallycontouredimplantcomparedtofivecurrentopenwedgehightibialosteotomyplates AT hoffmannalexander staticandfatiguestrengthofanovelanatomicallycontouredimplantcomparedtofivecurrentopenwedgehightibialosteotomyplates AT papedietrich staticandfatiguestrengthofanovelanatomicallycontouredimplantcomparedtofivecurrentopenwedgehightibialosteotomyplates |