Cargando…

Tuning the interactions between chiral plasmonic films and living cells

Designing chiral materials to manipulate the biological activities of cells has been an important area not only in chemistry and material science, but also in cell biology and biomedicine. Here, we introduce monolayer plasmonic chiral Au nanoparticle (NP) films modified with l- or d-penicillamine (P...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xueli, Xu, Liguang, Sun, Maozhong, Ma, Wei, Wu, Xiaoling, Xu, Chuanlai, Kuang, Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722823/
https://www.ncbi.nlm.nih.gov/pubmed/29222410
http://dx.doi.org/10.1038/s41467-017-02268-8
Descripción
Sumario:Designing chiral materials to manipulate the biological activities of cells has been an important area not only in chemistry and material science, but also in cell biology and biomedicine. Here, we introduce monolayer plasmonic chiral Au nanoparticle (NP) films modified with l- or d-penicillamine (Pen) to be developed for cell growth, differentiation, and retrieval. The monolayer films display high chiroptical activity, with circular dichroism values of 3.5 mdeg at 550 nm and 26.8 mdeg at 775 nm. The l-Pen-NP films accelerate cell proliferation, whereas the d -Pen-NP films have the opposite effect. Remote irradiation with light is chosen to noninvasively collect the cells. The results demonstrate that left circularly polarized light improves the efficiency of cell detachment up to 91.2% for l-Pen-NP films. These findings will facilitate the development of cell culture in biomedical application and help to understand natural homochirality.