Cargando…

Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks

In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns correspondin...

Descripción completa

Detalles Bibliográficos
Autores principales: Hramov, Alexander E., Maksimenko, Vladimir A., Pchelintseva, Svetlana V., Runnova, Anastasiya E., Grubov, Vadim V., Musatov, Vyacheslav Yu., Zhuravlev, Maksim O., Koronovskii, Alexey A., Pisarchik, Alexander N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722852/
https://www.ncbi.nlm.nih.gov/pubmed/29255403
http://dx.doi.org/10.3389/fnins.2017.00674
_version_ 1783285088668090368
author Hramov, Alexander E.
Maksimenko, Vladimir A.
Pchelintseva, Svetlana V.
Runnova, Anastasiya E.
Grubov, Vadim V.
Musatov, Vyacheslav Yu.
Zhuravlev, Maksim O.
Koronovskii, Alexey A.
Pisarchik, Alexander N.
author_facet Hramov, Alexander E.
Maksimenko, Vladimir A.
Pchelintseva, Svetlana V.
Runnova, Anastasiya E.
Grubov, Vadim V.
Musatov, Vyacheslav Yu.
Zhuravlev, Maksim O.
Koronovskii, Alexey A.
Pisarchik, Alexander N.
author_sort Hramov, Alexander E.
collection PubMed
description In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces.
format Online
Article
Text
id pubmed-5722852
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-57228522017-12-18 Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks Hramov, Alexander E. Maksimenko, Vladimir A. Pchelintseva, Svetlana V. Runnova, Anastasiya E. Grubov, Vadim V. Musatov, Vyacheslav Yu. Zhuravlev, Maksim O. Koronovskii, Alexey A. Pisarchik, Alexander N. Front Neurosci Neuroscience In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces. Frontiers Media S.A. 2017-12-04 /pmc/articles/PMC5722852/ /pubmed/29255403 http://dx.doi.org/10.3389/fnins.2017.00674 Text en Copyright © 2017 Hramov, Maksimenko, Pchelintseva, Runnova, Grubov, Musatov, Zhuravlev, Koronovskii and Pisarchik. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Hramov, Alexander E.
Maksimenko, Vladimir A.
Pchelintseva, Svetlana V.
Runnova, Anastasiya E.
Grubov, Vadim V.
Musatov, Vyacheslav Yu.
Zhuravlev, Maksim O.
Koronovskii, Alexey A.
Pisarchik, Alexander N.
Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks
title Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks
title_full Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks
title_fullStr Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks
title_full_unstemmed Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks
title_short Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks
title_sort classifying the perceptual interpretations of a bistable image using eeg and artificial neural networks
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722852/
https://www.ncbi.nlm.nih.gov/pubmed/29255403
http://dx.doi.org/10.3389/fnins.2017.00674
work_keys_str_mv AT hramovalexandere classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks
AT maksimenkovladimira classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks
AT pchelintsevasvetlanav classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks
AT runnovaanastasiyae classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks
AT grubovvadimv classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks
AT musatovvyacheslavyu classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks
AT zhuravlevmaksimo classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks
AT koronovskiialexeya classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks
AT pisarchikalexandern classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks