Cargando…
Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks
In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns correspondin...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722852/ https://www.ncbi.nlm.nih.gov/pubmed/29255403 http://dx.doi.org/10.3389/fnins.2017.00674 |
_version_ | 1783285088668090368 |
---|---|
author | Hramov, Alexander E. Maksimenko, Vladimir A. Pchelintseva, Svetlana V. Runnova, Anastasiya E. Grubov, Vadim V. Musatov, Vyacheslav Yu. Zhuravlev, Maksim O. Koronovskii, Alexey A. Pisarchik, Alexander N. |
author_facet | Hramov, Alexander E. Maksimenko, Vladimir A. Pchelintseva, Svetlana V. Runnova, Anastasiya E. Grubov, Vadim V. Musatov, Vyacheslav Yu. Zhuravlev, Maksim O. Koronovskii, Alexey A. Pisarchik, Alexander N. |
author_sort | Hramov, Alexander E. |
collection | PubMed |
description | In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces. |
format | Online Article Text |
id | pubmed-5722852 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-57228522017-12-18 Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks Hramov, Alexander E. Maksimenko, Vladimir A. Pchelintseva, Svetlana V. Runnova, Anastasiya E. Grubov, Vadim V. Musatov, Vyacheslav Yu. Zhuravlev, Maksim O. Koronovskii, Alexey A. Pisarchik, Alexander N. Front Neurosci Neuroscience In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces. Frontiers Media S.A. 2017-12-04 /pmc/articles/PMC5722852/ /pubmed/29255403 http://dx.doi.org/10.3389/fnins.2017.00674 Text en Copyright © 2017 Hramov, Maksimenko, Pchelintseva, Runnova, Grubov, Musatov, Zhuravlev, Koronovskii and Pisarchik. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Hramov, Alexander E. Maksimenko, Vladimir A. Pchelintseva, Svetlana V. Runnova, Anastasiya E. Grubov, Vadim V. Musatov, Vyacheslav Yu. Zhuravlev, Maksim O. Koronovskii, Alexey A. Pisarchik, Alexander N. Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks |
title | Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks |
title_full | Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks |
title_fullStr | Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks |
title_full_unstemmed | Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks |
title_short | Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks |
title_sort | classifying the perceptual interpretations of a bistable image using eeg and artificial neural networks |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722852/ https://www.ncbi.nlm.nih.gov/pubmed/29255403 http://dx.doi.org/10.3389/fnins.2017.00674 |
work_keys_str_mv | AT hramovalexandere classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks AT maksimenkovladimira classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks AT pchelintsevasvetlanav classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks AT runnovaanastasiyae classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks AT grubovvadimv classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks AT musatovvyacheslavyu classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks AT zhuravlevmaksimo classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks AT koronovskiialexeya classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks AT pisarchikalexandern classifyingtheperceptualinterpretationsofabistableimageusingeegandartificialneuralnetworks |