Cargando…

The evolution of phenotypic plasticity under global change

Marine ecosystems are currently in a state of flux, with ocean warming and acidification occurring at unprecedented rates. Phenotypic plasticity underpins acclimatory responses by shifting the mean phenotype in a population, which may buffer the negative effects of global change. However, little is...

Descripción completa

Detalles Bibliográficos
Autores principales: Gibbin, Emma M., Massamba N’Siala, Gloria, Chakravarti, Leela J., Jarrold, Michael D., Calosi, Piero
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722875/
https://www.ncbi.nlm.nih.gov/pubmed/29222433
http://dx.doi.org/10.1038/s41598-017-17554-0
Descripción
Sumario:Marine ecosystems are currently in a state of flux, with ocean warming and acidification occurring at unprecedented rates. Phenotypic plasticity underpins acclimatory responses by shifting the mean phenotype in a population, which may buffer the negative effects of global change. However, little is known about how phenotypic plasticity evolves across multiple generations. We tested this by reciprocally-transplanting the polychaete Ophryotrocha labronica between control and global change scenarios (ocean warming and acidification in isolation and combined) over five generations. By comparing the reaction norms of four life-history traits across generations, we show that juvenile developmental rate in the combined scenario was the only trait that changed its plastic response across generations when transplanted back to control conditions, and that adaptive plasticity was conserved in most traits, despite significant levels of selection and strong declines in individual fitness in the multi-generational exposure. We suggest the change in level of plasticity in the combined scenario is caused by differential allocation of energy between the mean and the plasticity of the trait along the multigenerational exposure. The ability to maintain within-generational levels of plasticity under global change scenarios has important eco-evolutionary and conservation implications, which are examined under the framework of assisted evolution programs.