Cargando…
Time Gain Needed for In-Ambulance Telemedicine: Cost-Utility Model
BACKGROUND: Stroke is a very time-sensitive pathology, and many new solutions target the optimization of prehospital stroke care to improve the stroke management process. In-ambulance telemedicine, defined by live bidirectional audio-video between a patient and a neurologist in a moving ambulance an...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722977/ https://www.ncbi.nlm.nih.gov/pubmed/29175808 http://dx.doi.org/10.2196/mhealth.8288 |
Sumario: | BACKGROUND: Stroke is a very time-sensitive pathology, and many new solutions target the optimization of prehospital stroke care to improve the stroke management process. In-ambulance telemedicine, defined by live bidirectional audio-video between a patient and a neurologist in a moving ambulance and the automated transfer of vital parameters, is a promising new approach to speed up and improve the quality of acute stroke care. Currently, no evidence exists on the cost effectiveness of in-ambulance telemedicine. OBJECTIVE: We aim to develop a first cost effectiveness model for in-ambulance telemedicine and use this model to estimate the time savings needed before in-ambulance telemedicine becomes cost effective. METHODS: Current standard stroke care is compared with current standard stroke care supplemented with in-ambulance telemedicine using a cost-utility model measuring costs and quality-adjusted life-years (QALYs) from a health care perspective. We combine a decision tree with a Markov model. Data from the UZ Brussel Stroke Registry (2282 stroke patients) and linked hospital claims data at individual level are combined with literature data to populate the model. A 2-way sensitivity analysis varying both implementation costs and time gain is performed to map the different cost-effective combinations and identify the time gain needed for cost effectiveness and dominance. For several modeled time gains, the cost-effectiveness acceptability curve is calculated and mapped in 1 figure. RESULTS: Under the base-case scenario (implementation cost of US $159,425) and taking a lifetime horizon into account, in-ambulance telemedicine is a cost-effective strategy compared to standard stroke care alone starting from a time gain of 6 minutes. After 12 minutes, in-ambulance telemedicine becomes dominant, and this results in a mean decrease of costs by US –$30 (95% CI –$32 to –$29) per patient with 0.00456 (95% CI 0.00448 to 0.00463) QALYs on average gained per patient. In over 82% of all probabilistic simulations, in-ambulance telemedicine remains under the cost-effectiveness threshold of US $47,747. CONCLUSIONS: Our model suggests that in-ambulance telemedicine can be cost effective starting from a time gain of 6 minutes and becomes a dominant strategy after approximately 15 minutes. This indicates that in-ambulance telemedicine has the potential to become a cost-effective intervention assuming time gains in clinical implementations are realized in the future. |
---|