Cargando…

The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats

OBJECTIVE(S): Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rat...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadeghi, Malihe, Reisi, Parham, Radahmadi, Maryam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mashhad University of Medical Sciences 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722998/
https://www.ncbi.nlm.nih.gov/pubmed/29238473
http://dx.doi.org/10.22038/IJBMS.2017.9619
Descripción
Sumario:OBJECTIVE(S): Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. MATERIALS AND METHODS: Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S) was injected (1.6 µg/kg, IP) before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long-term potentiation (LTP) in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization) in order to investigate synaptic plasticity. RESULTS: Stress impaired spatial memory significantly (P<0.01). CCK in the control rats improved memory (P<0.05), and prevented the impairments in the stress group. With respect to the control group, both fEPSP amplitude and slope were significantly (P<0.05) decreased in the stress group. However, there were no differences between responses of the control–CCK and Stress–CCK groups compared to the control group. CONCLUSION: The present results suggest that high levels of CCK-8S during induction of stress can modulate the destructive effects of stress on hippocampal synaptic plasticity and memory. Therefore, the mediatory effects of CCK in stress are likely as compensatory responses.