Cargando…

Comparison between radial artery tonometry pulse analyzer and pulsed-Doppler echocardiography derived hemodynamic parameters in cardiac surgery patients: a pilot study

BACKGROUND: Bedside non-invasive techniques, such as radial artery tonometry, to estimate hemodynamic parameters have gained increased relevance as an attractive alternative and efficient method to measure hemodynamics in outpatient departments. For our pilot study, we sought to compare cardiac outp...

Descripción completa

Detalles Bibliográficos
Autores principales: Zayat, Rashad, Goetzenich, Andreas, Lee, Ju-Yeon, Kang, HeeJung, Jansen-Park, So-Hyun, Schmitz-Rode, Thomas, Musetti, Giulia, Schnoering, Heike, Autschbach, Rüdiger, Hatam, Nima, Aljalloud, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723137/
https://www.ncbi.nlm.nih.gov/pubmed/29230366
http://dx.doi.org/10.7717/peerj.4132
Descripción
Sumario:BACKGROUND: Bedside non-invasive techniques, such as radial artery tonometry, to estimate hemodynamic parameters have gained increased relevance as an attractive alternative and efficient method to measure hemodynamics in outpatient departments. For our pilot study, we sought to compare cardiac output (CO), and stroke volume (SV) estimated from a radial artery tonometry blood pressure pulse analyzer (BPPA) (DMP-Life, DAEYOMEDI Co., Gyeonggi-do, South Korea) to pulsed-wave Doppler (PWD) echocardiography derived parameters. METHODS: From January 2015 to December 2016, all patients scheduled for coronary artery bypass (CABG) surgery at our department were screened. Exclusion criteria were, inter alia, moderate to severe aortic- or Mitral valve disease and peripheral arterial disease (PAD) > stage II. One hundred and seven patients were included (mean age 66.1 ± 9.9, 15 females, mean BMI 27.2 ± 4.1 kg/m(2)). All patients had pre-operative transthoracic echocardiography (TTE). We measured the hemodynamic parameters with the BPPA from the radial artery, randomly before or after TTE. For the comparison between the measurement methods we used the Bland-Altman test and Pearson correlation. RESULTS: Mean TTE-CO was 5.1 ± 0.96 L/min, and the mean BPPA-CO was 5.2 ± 0.85 L/min. The Bland-Altman analysis for CO revealed a bias of −0.13 L/min and SD of 0.90 L/min with upper and lower limits of agreement of −1.91 and +1.64 L/min. The correlation of CO measurements between DMP-life and TTE was poor (r = 0.501, p < 0.0001). The mean TTE-SV was 71.3 ± 16.2 mL and the mean BPPA-SV was 73.8 ± 19.2 mL. SV measurements correlated very well between the two methods (r = 0.900, p < 0.0001). The Bland-Altman analysis for SV revealed a bias of −2.54 mL and SD of ±8.42 mL and upper and lower limits of agreement of −19.05 and +13.96 mL, respectively. CONCLUSION: Our study shows for the first time that the DMP-life tonometry device measures SV and CO with reasonable accuracy and precision of agreement compared with TTE in preoperative cardiothoracic surgery patients. Tonometry BPPA are relatively quick and simple measuring devices, which facilitate the collection of cardiac and hemodynamic information. Further studies with a larger number of patients and with repeated measurements are in progress to test the reliability and repeatability of DMP-Life system.