Cargando…
Cancer-Specific Inhibitory Effects of Genetically Engineered Stem Cells Expressing Cytosine Deaminase and Interferon-β Against Choriocarcinoma in Xenografted Metastatic Mouse Models
Cancer treatments using stem cells expressing therapeutic genes have been identified for various types of cancers. In this study, we investigated inhibitory effects of HB1.F3.CD and HB1.F3.CD.IFN-β cells expressing Escherichia coli cytosine deaminase (CD) and human interferon-β (IFN-β) genes in intr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723382/ https://www.ncbi.nlm.nih.gov/pubmed/29202279 http://dx.doi.org/10.1016/j.tranon.2017.11.003 |
_version_ | 1783285201690951680 |
---|---|
author | Kim, Gyu-Sik Heo, Jae-Rim Kim, Seung U. Choi, Kyung-Chul |
author_facet | Kim, Gyu-Sik Heo, Jae-Rim Kim, Seung U. Choi, Kyung-Chul |
author_sort | Kim, Gyu-Sik |
collection | PubMed |
description | Cancer treatments using stem cells expressing therapeutic genes have been identified for various types of cancers. In this study, we investigated inhibitory effects of HB1.F3.CD and HB1.F3.CD.IFN-β cells expressing Escherichia coli cytosine deaminase (CD) and human interferon-β (IFN-β) genes in intravenously (i.v.) injected mice with a metastasis model. In this treatment, pro-drug 5-fluorocytosine (5-FC) is converted to cytotoxic drug 5-fluorouracil by hNSCs expressing the CD gene, which inhibits DNA synthesis in cancer cells. Moreover, IFN-β induces apoptosis and reduces the growth of cancer cells. Upon MTT assay, proliferation of choriocarcinoma (JEG-3) cells decreased when co-cultured with hNSCs expressing CD and IFN-β genes. To confirm the cancer-tropic effect of these stem cells, chemoattractant factors (VEGF, CXCR4, and C-kit) secreted from JEG-3 cells were identified by polymerase chain reaction. hNSCs migrate toward JEG-3 cells due to ligand-receptor interactions of these factors. Accordingly, the migration capability of hNSCs toward JEG-3 cells was confirmed using an in vitro Trans-well assay, in vivo subcutaneously (s.c.) injected mice groups (xenograft model), and metastasis model. Intravenously injected hNSCs migrated freely to other organs when compared to s.c. injected hNSCs. Thus, we confirmed the inhibition of lung and ovarian metastasis of choriocarcinoma by i.v. injected HB1.F3.CD or HB1.F3.CD.IFN-β cells in the presence of 5-FC. Treatment of these stem cells also increased the survival rates of mice. In conclusion, this study showed that metastatic cancer was diminished by genetically engineered hNSCs and noncytotoxic drug 5-FC. This is the first report of the therapeutic potential of i.v. injected hNSCs in a metastasis model; therefore, the results indicate that this stem cell therapy can be used as an alternative novel tool to treat metastatic choriocarcinoma. |
format | Online Article Text |
id | pubmed-5723382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Neoplasia Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-57233822017-12-18 Cancer-Specific Inhibitory Effects of Genetically Engineered Stem Cells Expressing Cytosine Deaminase and Interferon-β Against Choriocarcinoma in Xenografted Metastatic Mouse Models Kim, Gyu-Sik Heo, Jae-Rim Kim, Seung U. Choi, Kyung-Chul Transl Oncol Original article Cancer treatments using stem cells expressing therapeutic genes have been identified for various types of cancers. In this study, we investigated inhibitory effects of HB1.F3.CD and HB1.F3.CD.IFN-β cells expressing Escherichia coli cytosine deaminase (CD) and human interferon-β (IFN-β) genes in intravenously (i.v.) injected mice with a metastasis model. In this treatment, pro-drug 5-fluorocytosine (5-FC) is converted to cytotoxic drug 5-fluorouracil by hNSCs expressing the CD gene, which inhibits DNA synthesis in cancer cells. Moreover, IFN-β induces apoptosis and reduces the growth of cancer cells. Upon MTT assay, proliferation of choriocarcinoma (JEG-3) cells decreased when co-cultured with hNSCs expressing CD and IFN-β genes. To confirm the cancer-tropic effect of these stem cells, chemoattractant factors (VEGF, CXCR4, and C-kit) secreted from JEG-3 cells were identified by polymerase chain reaction. hNSCs migrate toward JEG-3 cells due to ligand-receptor interactions of these factors. Accordingly, the migration capability of hNSCs toward JEG-3 cells was confirmed using an in vitro Trans-well assay, in vivo subcutaneously (s.c.) injected mice groups (xenograft model), and metastasis model. Intravenously injected hNSCs migrated freely to other organs when compared to s.c. injected hNSCs. Thus, we confirmed the inhibition of lung and ovarian metastasis of choriocarcinoma by i.v. injected HB1.F3.CD or HB1.F3.CD.IFN-β cells in the presence of 5-FC. Treatment of these stem cells also increased the survival rates of mice. In conclusion, this study showed that metastatic cancer was diminished by genetically engineered hNSCs and noncytotoxic drug 5-FC. This is the first report of the therapeutic potential of i.v. injected hNSCs in a metastasis model; therefore, the results indicate that this stem cell therapy can be used as an alternative novel tool to treat metastatic choriocarcinoma. Neoplasia Press 2017-12-05 /pmc/articles/PMC5723382/ /pubmed/29202279 http://dx.doi.org/10.1016/j.tranon.2017.11.003 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original article Kim, Gyu-Sik Heo, Jae-Rim Kim, Seung U. Choi, Kyung-Chul Cancer-Specific Inhibitory Effects of Genetically Engineered Stem Cells Expressing Cytosine Deaminase and Interferon-β Against Choriocarcinoma in Xenografted Metastatic Mouse Models |
title | Cancer-Specific Inhibitory Effects of Genetically Engineered Stem Cells Expressing Cytosine Deaminase and Interferon-β Against Choriocarcinoma in Xenografted Metastatic Mouse Models |
title_full | Cancer-Specific Inhibitory Effects of Genetically Engineered Stem Cells Expressing Cytosine Deaminase and Interferon-β Against Choriocarcinoma in Xenografted Metastatic Mouse Models |
title_fullStr | Cancer-Specific Inhibitory Effects of Genetically Engineered Stem Cells Expressing Cytosine Deaminase and Interferon-β Against Choriocarcinoma in Xenografted Metastatic Mouse Models |
title_full_unstemmed | Cancer-Specific Inhibitory Effects of Genetically Engineered Stem Cells Expressing Cytosine Deaminase and Interferon-β Against Choriocarcinoma in Xenografted Metastatic Mouse Models |
title_short | Cancer-Specific Inhibitory Effects of Genetically Engineered Stem Cells Expressing Cytosine Deaminase and Interferon-β Against Choriocarcinoma in Xenografted Metastatic Mouse Models |
title_sort | cancer-specific inhibitory effects of genetically engineered stem cells expressing cytosine deaminase and interferon-β against choriocarcinoma in xenografted metastatic mouse models |
topic | Original article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723382/ https://www.ncbi.nlm.nih.gov/pubmed/29202279 http://dx.doi.org/10.1016/j.tranon.2017.11.003 |
work_keys_str_mv | AT kimgyusik cancerspecificinhibitoryeffectsofgeneticallyengineeredstemcellsexpressingcytosinedeaminaseandinterferonbagainstchoriocarcinomainxenograftedmetastaticmousemodels AT heojaerim cancerspecificinhibitoryeffectsofgeneticallyengineeredstemcellsexpressingcytosinedeaminaseandinterferonbagainstchoriocarcinomainxenograftedmetastaticmousemodels AT kimseungu cancerspecificinhibitoryeffectsofgeneticallyengineeredstemcellsexpressingcytosinedeaminaseandinterferonbagainstchoriocarcinomainxenograftedmetastaticmousemodels AT choikyungchul cancerspecificinhibitoryeffectsofgeneticallyengineeredstemcellsexpressingcytosinedeaminaseandinterferonbagainstchoriocarcinomainxenograftedmetastaticmousemodels |