Cargando…

Patterns of genomic variation in Coho salmon following reintroduction to the interior Columbia River

Coho salmon were extirpated in the mid‐20th century from the interior reaches of the Columbia River but were reintroduced with relatively abundant source stocks from the lower Columbia River near the Pacific coast. Reintroduction of Coho salmon to the interior Columbia River (Wenatchee River) using...

Descripción completa

Detalles Bibliográficos
Autores principales: Campbell, Nathan R., Kamphaus, Cory, Murdoch, Keely, Narum, Shawn R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723619/
https://www.ncbi.nlm.nih.gov/pubmed/29238560
http://dx.doi.org/10.1002/ece3.3492
Descripción
Sumario:Coho salmon were extirpated in the mid‐20th century from the interior reaches of the Columbia River but were reintroduced with relatively abundant source stocks from the lower Columbia River near the Pacific coast. Reintroduction of Coho salmon to the interior Columbia River (Wenatchee River) using lower river stocks placed selective pressures on the new colonizers due to substantial differences with their original habitat such as migration distance and navigation of six additional hydropower dams. We used restriction site‐associated DNA sequencing (RAD‐seq) to genotype 5,392 SNPs in reintroduced Coho salmon in the Wenatchee River over four generations to test for signals of temporal structure and adaptive variation. Temporal genetic structure among the three broodlines of reintroduced fish was evident among the initial return years (2000, 2001, and 2002) and their descendants, which indicated levels of reproductive isolation among broodlines. Signals of adaptive variation were detected from multiple outlier tests and identified candidate genes for further study. This study illustrated that genetic variation and structure of reintroduced populations are likely to reflect source stocks for multiple generations but may shift over time once established in nature.