Cargando…
Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule
The evolutionary trajectory of populations through time is influenced by the interplay of forces (biological, evolutionary, and anthropogenic) acting on the standing genetic variation. We used microsatellite and mitochondrial loci to examine the influence of population declines, of varying severity,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723630/ https://www.ncbi.nlm.nih.gov/pubmed/29238526 http://dx.doi.org/10.1002/ece3.3530 |
_version_ | 1783285244277817344 |
---|---|
author | Sonsthagen, Sarah A. Wilson, Robert E. Underwood, Jared G. |
author_facet | Sonsthagen, Sarah A. Wilson, Robert E. Underwood, Jared G. |
author_sort | Sonsthagen, Sarah A. |
collection | PubMed |
description | The evolutionary trajectory of populations through time is influenced by the interplay of forces (biological, evolutionary, and anthropogenic) acting on the standing genetic variation. We used microsatellite and mitochondrial loci to examine the influence of population declines, of varying severity, on genetic diversity within two Hawaiian endemic waterbirds, the Hawaiian coot and Hawaiian gallinule, by comparing historical (samples collected in the late 1800s and early 1900s) and modern (collected in 2012–2013) populations. Population declines simultaneously experienced by Hawaiian coots and Hawaiian gallinules differentially shaped the evolutionary trajectory of these two populations. Within Hawaiian coot, large reductions (between −38.4% and −51.4%) in mitochondrial diversity were observed, although minimal differences were observed in the distribution of allelic and haplotypic frequencies between sampled time periods. Conversely, for Hawaiian gallinule, allelic frequencies were strongly differentiated between time periods, signatures of a genetic bottleneck were detected, and biases in means of the effective population size were observed at microsatellite loci. The strength of the decline appears to have had a greater influence on genetic diversity within Hawaiian gallinule than Hawaiian coot, coincident with the reduction in census size. These species exhibit similar life history characteristics and generation times; therefore, we hypothesize that differences in behavior and colonization history are likely playing a large role in how allelic and haplotypic frequencies are being shaped through time. Furthermore, differences in patterns of genetic diversity within Hawaiian coot and Hawaiian gallinule highlight the influence of demographic and evolutionary processes in shaping how species respond genetically to ecological stressors. |
format | Online Article Text |
id | pubmed-5723630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-57236302017-12-13 Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule Sonsthagen, Sarah A. Wilson, Robert E. Underwood, Jared G. Ecol Evol Original Research The evolutionary trajectory of populations through time is influenced by the interplay of forces (biological, evolutionary, and anthropogenic) acting on the standing genetic variation. We used microsatellite and mitochondrial loci to examine the influence of population declines, of varying severity, on genetic diversity within two Hawaiian endemic waterbirds, the Hawaiian coot and Hawaiian gallinule, by comparing historical (samples collected in the late 1800s and early 1900s) and modern (collected in 2012–2013) populations. Population declines simultaneously experienced by Hawaiian coots and Hawaiian gallinules differentially shaped the evolutionary trajectory of these two populations. Within Hawaiian coot, large reductions (between −38.4% and −51.4%) in mitochondrial diversity were observed, although minimal differences were observed in the distribution of allelic and haplotypic frequencies between sampled time periods. Conversely, for Hawaiian gallinule, allelic frequencies were strongly differentiated between time periods, signatures of a genetic bottleneck were detected, and biases in means of the effective population size were observed at microsatellite loci. The strength of the decline appears to have had a greater influence on genetic diversity within Hawaiian gallinule than Hawaiian coot, coincident with the reduction in census size. These species exhibit similar life history characteristics and generation times; therefore, we hypothesize that differences in behavior and colonization history are likely playing a large role in how allelic and haplotypic frequencies are being shaped through time. Furthermore, differences in patterns of genetic diversity within Hawaiian coot and Hawaiian gallinule highlight the influence of demographic and evolutionary processes in shaping how species respond genetically to ecological stressors. John Wiley and Sons Inc. 2017-10-20 /pmc/articles/PMC5723630/ /pubmed/29238526 http://dx.doi.org/10.1002/ece3.3530 Text en © 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Sonsthagen, Sarah A. Wilson, Robert E. Underwood, Jared G. Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule |
title | Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule |
title_full | Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule |
title_fullStr | Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule |
title_full_unstemmed | Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule |
title_short | Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule |
title_sort | genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: an example from hawaiian coot and hawaiian gallinule |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723630/ https://www.ncbi.nlm.nih.gov/pubmed/29238526 http://dx.doi.org/10.1002/ece3.3530 |
work_keys_str_mv | AT sonsthagensaraha geneticimplicationsofbottleneckeffectsofdifferingseveritiesongeneticdiversityinnaturallyrecoveringpopulationsanexamplefromhawaiiancootandhawaiiangallinule AT wilsonroberte geneticimplicationsofbottleneckeffectsofdifferingseveritiesongeneticdiversityinnaturallyrecoveringpopulationsanexamplefromhawaiiancootandhawaiiangallinule AT underwoodjaredg geneticimplicationsofbottleneckeffectsofdifferingseveritiesongeneticdiversityinnaturallyrecoveringpopulationsanexamplefromhawaiiancootandhawaiiangallinule |