Cargando…
Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error
Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling (SEM), where latent variables are approximated by weighted composites of indicators. It has no formal mechanism to incorporate errors in indicators, which in turn renders components prone t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723672/ https://www.ncbi.nlm.nih.gov/pubmed/29270146 http://dx.doi.org/10.3389/fpsyg.2017.02137 |
_version_ | 1783285254417547264 |
---|---|
author | Hwang, Heungsun Takane, Yoshio Jung, Kwanghee |
author_facet | Hwang, Heungsun Takane, Yoshio Jung, Kwanghee |
author_sort | Hwang, Heungsun |
collection | PubMed |
description | Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling (SEM), where latent variables are approximated by weighted composites of indicators. It has no formal mechanism to incorporate errors in indicators, which in turn renders components prone to the errors as well. We propose to extend GSCA to account for errors in indicators explicitly. This extension, called GSCA(M), considers both common and unique parts of indicators, as postulated in common factor analysis, and estimates a weighted composite of indicators with their unique parts removed. Adding such unique parts or uniqueness terms serves to account for measurement errors in indicators in a manner similar to common factor analysis. Simulation studies are conducted to compare parameter recovery of GSCA(M) and existing methods. These methods are also applied to fit a substantively well-established model to real data. |
format | Online Article Text |
id | pubmed-5723672 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-57236722017-12-21 Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error Hwang, Heungsun Takane, Yoshio Jung, Kwanghee Front Psychol Psychology Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling (SEM), where latent variables are approximated by weighted composites of indicators. It has no formal mechanism to incorporate errors in indicators, which in turn renders components prone to the errors as well. We propose to extend GSCA to account for errors in indicators explicitly. This extension, called GSCA(M), considers both common and unique parts of indicators, as postulated in common factor analysis, and estimates a weighted composite of indicators with their unique parts removed. Adding such unique parts or uniqueness terms serves to account for measurement errors in indicators in a manner similar to common factor analysis. Simulation studies are conducted to compare parameter recovery of GSCA(M) and existing methods. These methods are also applied to fit a substantively well-established model to real data. Frontiers Media S.A. 2017-12-06 /pmc/articles/PMC5723672/ /pubmed/29270146 http://dx.doi.org/10.3389/fpsyg.2017.02137 Text en Copyright © 2017 Hwang, Takane and Jung. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychology Hwang, Heungsun Takane, Yoshio Jung, Kwanghee Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error |
title | Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error |
title_full | Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error |
title_fullStr | Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error |
title_full_unstemmed | Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error |
title_short | Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error |
title_sort | generalized structured component analysis with uniqueness terms for accommodating measurement error |
topic | Psychology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723672/ https://www.ncbi.nlm.nih.gov/pubmed/29270146 http://dx.doi.org/10.3389/fpsyg.2017.02137 |
work_keys_str_mv | AT hwangheungsun generalizedstructuredcomponentanalysiswithuniquenesstermsforaccommodatingmeasurementerror AT takaneyoshio generalizedstructuredcomponentanalysiswithuniquenesstermsforaccommodatingmeasurementerror AT jungkwanghee generalizedstructuredcomponentanalysiswithuniquenesstermsforaccommodatingmeasurementerror |