Cargando…
Automatic CDR Estimation for Early Glaucoma Diagnosis
Glaucoma is a degenerative disease that constitutes the second cause of blindness in developed countries. Although it cannot be cured, its progression can be prevented through early diagnosis. In this paper, we propose a new algorithm for automatic glaucoma diagnosis based on retinal colour images....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723944/ https://www.ncbi.nlm.nih.gov/pubmed/29279773 http://dx.doi.org/10.1155/2017/5953621 |
_version_ | 1783285270951493632 |
---|---|
author | Fernandez-Granero, M. A. Sarmiento, A. Sanchez-Morillo, D. Jiménez, S. Alemany, P. Fondón, I. |
author_facet | Fernandez-Granero, M. A. Sarmiento, A. Sanchez-Morillo, D. Jiménez, S. Alemany, P. Fondón, I. |
author_sort | Fernandez-Granero, M. A. |
collection | PubMed |
description | Glaucoma is a degenerative disease that constitutes the second cause of blindness in developed countries. Although it cannot be cured, its progression can be prevented through early diagnosis. In this paper, we propose a new algorithm for automatic glaucoma diagnosis based on retinal colour images. We focus on capturing the inherent colour changes of optic disc (OD) and cup borders by computing several colour derivatives in CIE L(∗)a(∗)b(∗) colour space with CIE94 colour distance. In addition, we consider spatial information retaining these colour derivatives and the original CIE L(∗)a(∗)b(∗) values of the pixel and adding other characteristics such as its distance to the OD centre. The proposed strategy is robust due to a simple structure that does not need neither initial segmentation nor removal of the vascular tree or detection of vessel bends. The method has been extensively validated with two datasets (one public and one private), each one comprising 60 images of high variability of appearances. Achieved class-wise-averaged accuracy of 95.02% and 81.19% demonstrates that this automated approach could support physicians in the diagnosis of glaucoma in its early stage, and therefore, it could be seen as an opportunity for developing low-cost solutions for mass screening programs. |
format | Online Article Text |
id | pubmed-5723944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-57239442017-12-26 Automatic CDR Estimation for Early Glaucoma Diagnosis Fernandez-Granero, M. A. Sarmiento, A. Sanchez-Morillo, D. Jiménez, S. Alemany, P. Fondón, I. J Healthc Eng Research Article Glaucoma is a degenerative disease that constitutes the second cause of blindness in developed countries. Although it cannot be cured, its progression can be prevented through early diagnosis. In this paper, we propose a new algorithm for automatic glaucoma diagnosis based on retinal colour images. We focus on capturing the inherent colour changes of optic disc (OD) and cup borders by computing several colour derivatives in CIE L(∗)a(∗)b(∗) colour space with CIE94 colour distance. In addition, we consider spatial information retaining these colour derivatives and the original CIE L(∗)a(∗)b(∗) values of the pixel and adding other characteristics such as its distance to the OD centre. The proposed strategy is robust due to a simple structure that does not need neither initial segmentation nor removal of the vascular tree or detection of vessel bends. The method has been extensively validated with two datasets (one public and one private), each one comprising 60 images of high variability of appearances. Achieved class-wise-averaged accuracy of 95.02% and 81.19% demonstrates that this automated approach could support physicians in the diagnosis of glaucoma in its early stage, and therefore, it could be seen as an opportunity for developing low-cost solutions for mass screening programs. Hindawi 2017 2017-11-27 /pmc/articles/PMC5723944/ /pubmed/29279773 http://dx.doi.org/10.1155/2017/5953621 Text en Copyright © 2017 M. A. Fernandez-Granero et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Fernandez-Granero, M. A. Sarmiento, A. Sanchez-Morillo, D. Jiménez, S. Alemany, P. Fondón, I. Automatic CDR Estimation for Early Glaucoma Diagnosis |
title | Automatic CDR Estimation for Early Glaucoma Diagnosis |
title_full | Automatic CDR Estimation for Early Glaucoma Diagnosis |
title_fullStr | Automatic CDR Estimation for Early Glaucoma Diagnosis |
title_full_unstemmed | Automatic CDR Estimation for Early Glaucoma Diagnosis |
title_short | Automatic CDR Estimation for Early Glaucoma Diagnosis |
title_sort | automatic cdr estimation for early glaucoma diagnosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723944/ https://www.ncbi.nlm.nih.gov/pubmed/29279773 http://dx.doi.org/10.1155/2017/5953621 |
work_keys_str_mv | AT fernandezgraneroma automaticcdrestimationforearlyglaucomadiagnosis AT sarmientoa automaticcdrestimationforearlyglaucomadiagnosis AT sanchezmorillod automaticcdrestimationforearlyglaucomadiagnosis AT jimenezs automaticcdrestimationforearlyglaucomadiagnosis AT alemanyp automaticcdrestimationforearlyglaucomadiagnosis AT fondoni automaticcdrestimationforearlyglaucomadiagnosis |