Cargando…
Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm
Increasingly, computed tomography (CT) offers higher resolution and faster acquisition times. This has resulted in the opportunity to detect small lung nodules, which may represent lung cancers at earlier and potentially more curable stages. However, in the current clinical practice, hundreds of suc...
Autores principales: | Zhao, Binsheng, Gamsu, Gordon, Ginsberg, Michelle S., Jiang, Li, Schwartz, Lawrence H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724445/ https://www.ncbi.nlm.nih.gov/pubmed/12841796 http://dx.doi.org/10.1120/jacmp.v4i3.2522 |
Ejemplares similares
-
Accuracy of lung nodule density on HRCT: analysis by PSF‐based image simulation
por: Ohno, Ken, et al.
Publicado: (2012) -
A routine quality assurance test for CT automatic exposure control systems
por: Iball, Gareth R., et al.
Publicado: (2016) -
New strategy for automatic tumor segmentation by adaptive thresholding on PET/CT images
por: Moussallem, Mazen, et al.
Publicado: (2012) -
Differentiation of pulmonary sclerosing pneumocytoma from solid malignant pulmonary nodules by radiomic analysis on multiphasic CT
por: Ni, Xiao‐Qiong, et al.
Publicado: (2020) -
Evaluation of automatic tube current modulation of CT scanners using a dedicated and the CTDI dosimetry phantoms
por: Tsalafoutas, Ioannis A., et al.
Publicado: (2022)