Cargando…

Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound

BACKGROUND: Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory‐induced organ motion can reduce the treatment efficiency and negatively influence the treatm...

Descripción completa

Detalles Bibliográficos
Autores principales: Seo, Joonho, Koizumi, Norihiro, Mitsuishi, Mamoru, Sugita, Naohiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724706/
https://www.ncbi.nlm.nih.gov/pubmed/27995752
http://dx.doi.org/10.1002/rcs.1793
Descripción
Sumario:BACKGROUND: Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory‐induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. MATERIALS AND METHODS: In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three‐axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. RESULTS: In the experiments, respiratory‐induced organ motion was simulated in a water tank with a linear actuator and kidney‐shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU‐ablated lesion in the desired position of the respiratory‐moving phantom model. CONCLUSIONS: We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment.