Cargando…
Genome-wide microarray analysis leads to identification of genes in response to herbicide, metribuzin in wheat leaves
Herbicides are an important component of weed management in wheat, particularly in the southeastern US where weeds actively compete with wheat throughout the winter for nutrients and reduce tillering and ultimately the yield of the crop. Some wheat varieties are sensitive to metribuzin, a low-cost n...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724888/ https://www.ncbi.nlm.nih.gov/pubmed/29228046 http://dx.doi.org/10.1371/journal.pone.0189639 |
_version_ | 1783285432747819008 |
---|---|
author | Pilcher, Whitney Zandkamiri, Hana Arceneaux, Kelly Harrison, Stephen Baisakh, Niranjan |
author_facet | Pilcher, Whitney Zandkamiri, Hana Arceneaux, Kelly Harrison, Stephen Baisakh, Niranjan |
author_sort | Pilcher, Whitney |
collection | PubMed |
description | Herbicides are an important component of weed management in wheat, particularly in the southeastern US where weeds actively compete with wheat throughout the winter for nutrients and reduce tillering and ultimately the yield of the crop. Some wheat varieties are sensitive to metribuzin, a low-cost non-selective herbicide, leading to leaf chlorosis, stand loss, and decreased yield. Knowledge of the genetics of herbicide tolerance in wheat is very limited and most new varieties have not been screened for metribuzin tolerance. The identification of genes associated with metribuzin tolerance will lead to the development of molecular markers for use in screening breeding lines for metribuzin tolerance. AGS 2035 and AGS 2060 were identified as resistant and sensitive to metribuzin in several previous field screening experiments as well as controlled condition screening of nine varieties in the present study. Genome-wide transcriptome profiling of the genes in AGS 2035 and AGS 2060 through microarray analysis identified 169 and 127 genes to be significantly (2-fold, P>0.01) up- and down-regulated, respectively in response to metribuzin. Functional annotation revealed that genes involved in cell wall biosynthesis, photosynthesis and sucrose metabolism were highly responsive to metribuzin application. (Semi)quantitative RT-PCR of seven selected differentially expressed genes (DEGs) indicated that a gene coding for alkaline alpha-galactosidase 2 (AAG2) was specifically expressed in resistant varieties only after one and two weeks of metribuzin application. Integration of the DEGs into our ongoing mapping effort and identification of the genes within the QTL region showing significant association with resistance in future will aid in development of functional markers for metribuzin resistance. |
format | Online Article Text |
id | pubmed-5724888 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57248882017-12-15 Genome-wide microarray analysis leads to identification of genes in response to herbicide, metribuzin in wheat leaves Pilcher, Whitney Zandkamiri, Hana Arceneaux, Kelly Harrison, Stephen Baisakh, Niranjan PLoS One Research Article Herbicides are an important component of weed management in wheat, particularly in the southeastern US where weeds actively compete with wheat throughout the winter for nutrients and reduce tillering and ultimately the yield of the crop. Some wheat varieties are sensitive to metribuzin, a low-cost non-selective herbicide, leading to leaf chlorosis, stand loss, and decreased yield. Knowledge of the genetics of herbicide tolerance in wheat is very limited and most new varieties have not been screened for metribuzin tolerance. The identification of genes associated with metribuzin tolerance will lead to the development of molecular markers for use in screening breeding lines for metribuzin tolerance. AGS 2035 and AGS 2060 were identified as resistant and sensitive to metribuzin in several previous field screening experiments as well as controlled condition screening of nine varieties in the present study. Genome-wide transcriptome profiling of the genes in AGS 2035 and AGS 2060 through microarray analysis identified 169 and 127 genes to be significantly (2-fold, P>0.01) up- and down-regulated, respectively in response to metribuzin. Functional annotation revealed that genes involved in cell wall biosynthesis, photosynthesis and sucrose metabolism were highly responsive to metribuzin application. (Semi)quantitative RT-PCR of seven selected differentially expressed genes (DEGs) indicated that a gene coding for alkaline alpha-galactosidase 2 (AAG2) was specifically expressed in resistant varieties only after one and two weeks of metribuzin application. Integration of the DEGs into our ongoing mapping effort and identification of the genes within the QTL region showing significant association with resistance in future will aid in development of functional markers for metribuzin resistance. Public Library of Science 2017-12-11 /pmc/articles/PMC5724888/ /pubmed/29228046 http://dx.doi.org/10.1371/journal.pone.0189639 Text en © 2017 Pilcher et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Pilcher, Whitney Zandkamiri, Hana Arceneaux, Kelly Harrison, Stephen Baisakh, Niranjan Genome-wide microarray analysis leads to identification of genes in response to herbicide, metribuzin in wheat leaves |
title | Genome-wide microarray analysis leads to identification of genes in response to herbicide, metribuzin in wheat leaves |
title_full | Genome-wide microarray analysis leads to identification of genes in response to herbicide, metribuzin in wheat leaves |
title_fullStr | Genome-wide microarray analysis leads to identification of genes in response to herbicide, metribuzin in wheat leaves |
title_full_unstemmed | Genome-wide microarray analysis leads to identification of genes in response to herbicide, metribuzin in wheat leaves |
title_short | Genome-wide microarray analysis leads to identification of genes in response to herbicide, metribuzin in wheat leaves |
title_sort | genome-wide microarray analysis leads to identification of genes in response to herbicide, metribuzin in wheat leaves |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724888/ https://www.ncbi.nlm.nih.gov/pubmed/29228046 http://dx.doi.org/10.1371/journal.pone.0189639 |
work_keys_str_mv | AT pilcherwhitney genomewidemicroarrayanalysisleadstoidentificationofgenesinresponsetoherbicidemetribuzininwheatleaves AT zandkamirihana genomewidemicroarrayanalysisleadstoidentificationofgenesinresponsetoherbicidemetribuzininwheatleaves AT arceneauxkelly genomewidemicroarrayanalysisleadstoidentificationofgenesinresponsetoherbicidemetribuzininwheatleaves AT harrisonstephen genomewidemicroarrayanalysisleadstoidentificationofgenesinresponsetoherbicidemetribuzininwheatleaves AT baisakhniranjan genomewidemicroarrayanalysisleadstoidentificationofgenesinresponsetoherbicidemetribuzininwheatleaves |