Cargando…

The Mechanism of Regulation of Pantothenate Biosynthesis by the PanD–PanZ·AcCoA Complex Reveals an Additional Mode of Action for the Antimetabolite N-Pentyl Pantothenamide (N5-Pan)

[Image: see text] The antimetabolite pentyl pantothenamide has broad spectrum antibiotic activity but exhibits enhanced activity against Escherichia coli. The PanDZ complex has been proposed to regulate the pantothenate biosynthetic pathway in E. coli by limiting the supply of β-alanine in response...

Descripción completa

Detalles Bibliográficos
Autores principales: Arnott, Zoe L. P., Nozaki, Shingo, Monteiro, Diana C. F., Morgan, Holly E., Pearson, Arwen R., Niki, Hironori, Webb, Michael E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724930/
https://www.ncbi.nlm.nih.gov/pubmed/28832133
http://dx.doi.org/10.1021/acs.biochem.7b00509
Descripción
Sumario:[Image: see text] The antimetabolite pentyl pantothenamide has broad spectrum antibiotic activity but exhibits enhanced activity against Escherichia coli. The PanDZ complex has been proposed to regulate the pantothenate biosynthetic pathway in E. coli by limiting the supply of β-alanine in response to coenzyme A concentration. We show that formation of such a complex between activated aspartate decarboxylase (PanD) and PanZ leads to sequestration of the pyruvoyl cofactor as a ketone hydrate and demonstrate that both PanZ overexpression-linked β-alanine auxotrophy and pentyl pantothenamide toxicity are due to formation of this complex. This both demonstrates that the PanDZ complex regulates pantothenate biosynthesis in a cellular context and validates the complex as a target for antibiotic development.