Cargando…
Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease
Patients of the von Hippel-Lindau (VHL) disease frequently develop clear cell renal cell carcinoma (ccRCC). Using archived, formalin-fixed, paraffin-embedded (FFPE) samples, we sought to determine global proteome alterations that distinguish ccRCC tissue from adjacent, non-malignant kidney tissue in...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725003/ https://www.ncbi.nlm.nih.gov/pubmed/29245961 http://dx.doi.org/10.18632/oncotarget.21929 |
_version_ | 1783285454088437760 |
---|---|
author | Drendel, Vanessa Heckelmann, Bianca Chen, Chia-Yi Weisser, Juliane Espadas, Guadalupe Schell, Christoph Sabido, Eduard Werner, Martin Jilg, Cordula A. Schilling, Oliver |
author_facet | Drendel, Vanessa Heckelmann, Bianca Chen, Chia-Yi Weisser, Juliane Espadas, Guadalupe Schell, Christoph Sabido, Eduard Werner, Martin Jilg, Cordula A. Schilling, Oliver |
author_sort | Drendel, Vanessa |
collection | PubMed |
description | Patients of the von Hippel-Lindau (VHL) disease frequently develop clear cell renal cell carcinoma (ccRCC). Using archived, formalin-fixed, paraffin-embedded (FFPE) samples, we sought to determine global proteome alterations that distinguish ccRCC tissue from adjacent, non-malignant kidney tissue in VHL-patients. Our quantitative proteomic analysis clearly discriminated tumor and non-malignant tissue. Significantly dysregulated proteins were distinguished using the linear models for microarray data algorithm. In the ccRCC tissue, we noticed a predominant under-representation of proteins involved in the tricarboxylic acid cycle and an increase in proteins involved in glycolysis. This profile possibly represents a proteomic fingerprint of the “Warburg effect”, which is a molecular hallmark of ccRCC. Furthermore, we observed an increase in proteins involved in extracellular matrix organization. We also noticed differential expression of many exoproteases in the ccRCC tissue. Of particular note were opposing alterations of Xaa-Pro Aminopeptidases-1 and -2 (XPNPEP-1 and -2): a strong decrease of XPNPEP-2 in ccRCC was accompanied by abundant presence of the related protease XPNPEP-1. In both cases, we corroborated the proteomic results by immunohistochemical analysis of ccRCC and adjacent, non-malignant kidney tissue of VHL patients. To functionally investigate the role of XPNPEP-1 in ccRCC, we performed small-hairpin RNA mediated XPNPEP-1 expression silencing in 786-O ccRCC cells harboring a mutated VHL gene. We found that XPNPEP-1 expression dampens cellular proliferation and migration. These results suggest that XPNPEP-1 is likely an anti-target in ccRCC. Methodologically, our work further validates the robustness of using FFPE material for quantitative proteomics. |
format | Online Article Text |
id | pubmed-5725003 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-57250032017-12-14 Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease Drendel, Vanessa Heckelmann, Bianca Chen, Chia-Yi Weisser, Juliane Espadas, Guadalupe Schell, Christoph Sabido, Eduard Werner, Martin Jilg, Cordula A. Schilling, Oliver Oncotarget Research Paper Patients of the von Hippel-Lindau (VHL) disease frequently develop clear cell renal cell carcinoma (ccRCC). Using archived, formalin-fixed, paraffin-embedded (FFPE) samples, we sought to determine global proteome alterations that distinguish ccRCC tissue from adjacent, non-malignant kidney tissue in VHL-patients. Our quantitative proteomic analysis clearly discriminated tumor and non-malignant tissue. Significantly dysregulated proteins were distinguished using the linear models for microarray data algorithm. In the ccRCC tissue, we noticed a predominant under-representation of proteins involved in the tricarboxylic acid cycle and an increase in proteins involved in glycolysis. This profile possibly represents a proteomic fingerprint of the “Warburg effect”, which is a molecular hallmark of ccRCC. Furthermore, we observed an increase in proteins involved in extracellular matrix organization. We also noticed differential expression of many exoproteases in the ccRCC tissue. Of particular note were opposing alterations of Xaa-Pro Aminopeptidases-1 and -2 (XPNPEP-1 and -2): a strong decrease of XPNPEP-2 in ccRCC was accompanied by abundant presence of the related protease XPNPEP-1. In both cases, we corroborated the proteomic results by immunohistochemical analysis of ccRCC and adjacent, non-malignant kidney tissue of VHL patients. To functionally investigate the role of XPNPEP-1 in ccRCC, we performed small-hairpin RNA mediated XPNPEP-1 expression silencing in 786-O ccRCC cells harboring a mutated VHL gene. We found that XPNPEP-1 expression dampens cellular proliferation and migration. These results suggest that XPNPEP-1 is likely an anti-target in ccRCC. Methodologically, our work further validates the robustness of using FFPE material for quantitative proteomics. Impact Journals LLC 2017-10-19 /pmc/articles/PMC5725003/ /pubmed/29245961 http://dx.doi.org/10.18632/oncotarget.21929 Text en Copyright: © 2017 Drendel et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Drendel, Vanessa Heckelmann, Bianca Chen, Chia-Yi Weisser, Juliane Espadas, Guadalupe Schell, Christoph Sabido, Eduard Werner, Martin Jilg, Cordula A. Schilling, Oliver Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease |
title | Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease |
title_full | Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease |
title_fullStr | Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease |
title_full_unstemmed | Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease |
title_short | Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease |
title_sort | proteome profiling of clear cell renal cell carcinoma in von hippel-lindau patients highlights upregulation of xaa-pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725003/ https://www.ncbi.nlm.nih.gov/pubmed/29245961 http://dx.doi.org/10.18632/oncotarget.21929 |
work_keys_str_mv | AT drendelvanessa proteomeprofilingofclearcellrenalcellcarcinomainvonhippellindaupatientshighlightsupregulationofxaaproaminopeptidase1anantiproliferativeandantimigratoryexoprotease AT heckelmannbianca proteomeprofilingofclearcellrenalcellcarcinomainvonhippellindaupatientshighlightsupregulationofxaaproaminopeptidase1anantiproliferativeandantimigratoryexoprotease AT chenchiayi proteomeprofilingofclearcellrenalcellcarcinomainvonhippellindaupatientshighlightsupregulationofxaaproaminopeptidase1anantiproliferativeandantimigratoryexoprotease AT weisserjuliane proteomeprofilingofclearcellrenalcellcarcinomainvonhippellindaupatientshighlightsupregulationofxaaproaminopeptidase1anantiproliferativeandantimigratoryexoprotease AT espadasguadalupe proteomeprofilingofclearcellrenalcellcarcinomainvonhippellindaupatientshighlightsupregulationofxaaproaminopeptidase1anantiproliferativeandantimigratoryexoprotease AT schellchristoph proteomeprofilingofclearcellrenalcellcarcinomainvonhippellindaupatientshighlightsupregulationofxaaproaminopeptidase1anantiproliferativeandantimigratoryexoprotease AT sabidoeduard proteomeprofilingofclearcellrenalcellcarcinomainvonhippellindaupatientshighlightsupregulationofxaaproaminopeptidase1anantiproliferativeandantimigratoryexoprotease AT wernermartin proteomeprofilingofclearcellrenalcellcarcinomainvonhippellindaupatientshighlightsupregulationofxaaproaminopeptidase1anantiproliferativeandantimigratoryexoprotease AT jilgcordulaa proteomeprofilingofclearcellrenalcellcarcinomainvonhippellindaupatientshighlightsupregulationofxaaproaminopeptidase1anantiproliferativeandantimigratoryexoprotease AT schillingoliver proteomeprofilingofclearcellrenalcellcarcinomainvonhippellindaupatientshighlightsupregulationofxaaproaminopeptidase1anantiproliferativeandantimigratoryexoprotease |