Cargando…
Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3)
The chondroitin sulfatases N-acetylgalactosamine-4-sulfatase (ARSB) and galactosamine-N-acetyl-6-sulfatase (GALNS) remove either the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate (C4S) and dermatan sulfate, or the 6-sulfate group of chondroitin 6-sulfate, chondroitin 4,6-disulfate...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725016/ https://www.ncbi.nlm.nih.gov/pubmed/29245974 http://dx.doi.org/10.18632/oncotarget.22152 |
_version_ | 1783285457162862592 |
---|---|
author | Bhattacharyya, Sumit Feferman, Leo Tobacman, Joanne K. |
author_facet | Bhattacharyya, Sumit Feferman, Leo Tobacman, Joanne K. |
author_sort | Bhattacharyya, Sumit |
collection | PubMed |
description | The chondroitin sulfatases N-acetylgalactosamine-4-sulfatase (ARSB) and galactosamine-N-acetyl-6-sulfatase (GALNS) remove either the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate (C4S) and dermatan sulfate, or the 6-sulfate group of chondroitin 6-sulfate, chondroitin 4,6-disulfate (chondroitin sulfate E), or keratan sulfate. In human prostate cancer tissues, the ARSB activity was reduced and the GALNS activity was increased, compared to normal prostate tissue. In human prostate stem cells, when ARSB was reduced by silencing or GALNS was increased by overexpression, activity of SHP2, the ubiquitous non-receptor tyrosine phosphatase, declined, attributable to increased binding of SHP2 with C4S. This led to increases in phospho-ERK1/2, Myc/Max nuclear DNA binding, DNA methyltransferase (DNMT) activity and expression, and methylation of the Dickkopf Wnt signaling pathway inhibitor (DKK)3 promoter and to reduced DKK3 expression. Since DKK3 negatively regulates Wnt/β-catenin signaling, silencing of ARSB or overexpression of GALNS disinhibited (increased) Wnt/β-catenin signaling. These findings indicate that the chondroitin sulfatases can exert profound effects on Wnt-mediated processes, due to epigenetic effects that modulate Wnt signaling. |
format | Online Article Text |
id | pubmed-5725016 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-57250162017-12-14 Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3) Bhattacharyya, Sumit Feferman, Leo Tobacman, Joanne K. Oncotarget Research Paper The chondroitin sulfatases N-acetylgalactosamine-4-sulfatase (ARSB) and galactosamine-N-acetyl-6-sulfatase (GALNS) remove either the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate (C4S) and dermatan sulfate, or the 6-sulfate group of chondroitin 6-sulfate, chondroitin 4,6-disulfate (chondroitin sulfate E), or keratan sulfate. In human prostate cancer tissues, the ARSB activity was reduced and the GALNS activity was increased, compared to normal prostate tissue. In human prostate stem cells, when ARSB was reduced by silencing or GALNS was increased by overexpression, activity of SHP2, the ubiquitous non-receptor tyrosine phosphatase, declined, attributable to increased binding of SHP2 with C4S. This led to increases in phospho-ERK1/2, Myc/Max nuclear DNA binding, DNA methyltransferase (DNMT) activity and expression, and methylation of the Dickkopf Wnt signaling pathway inhibitor (DKK)3 promoter and to reduced DKK3 expression. Since DKK3 negatively regulates Wnt/β-catenin signaling, silencing of ARSB or overexpression of GALNS disinhibited (increased) Wnt/β-catenin signaling. These findings indicate that the chondroitin sulfatases can exert profound effects on Wnt-mediated processes, due to epigenetic effects that modulate Wnt signaling. Impact Journals LLC 2017-10-27 /pmc/articles/PMC5725016/ /pubmed/29245974 http://dx.doi.org/10.18632/oncotarget.22152 Text en Copyright: © 2017 Bhattacharyya et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Bhattacharyya, Sumit Feferman, Leo Tobacman, Joanne K. Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3) |
title | Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3) |
title_full | Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3) |
title_fullStr | Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3) |
title_full_unstemmed | Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3) |
title_short | Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3) |
title_sort | chondroitin sulfatases differentially regulate wnt signaling in prostate stem cells through effects on shp2, phospho-erk1/2, and dickkopf wnt signaling pathway inhibitor (dkk3) |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725016/ https://www.ncbi.nlm.nih.gov/pubmed/29245974 http://dx.doi.org/10.18632/oncotarget.22152 |
work_keys_str_mv | AT bhattacharyyasumit chondroitinsulfatasesdifferentiallyregulatewntsignalinginprostatestemcellsthrougheffectsonshp2phosphoerk12anddickkopfwntsignalingpathwayinhibitordkk3 AT fefermanleo chondroitinsulfatasesdifferentiallyregulatewntsignalinginprostatestemcellsthrougheffectsonshp2phosphoerk12anddickkopfwntsignalingpathwayinhibitordkk3 AT tobacmanjoannek chondroitinsulfatasesdifferentiallyregulatewntsignalinginprostatestemcellsthrougheffectsonshp2phosphoerk12anddickkopfwntsignalingpathwayinhibitordkk3 |