Cargando…
A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology?
Biomarker-driven cancer therapy has met with significant clinical success. Identification of a biomarker implicated in a malignant phenotype and linked to poor clinical outcome is required if we are to develop these types of therapies. A subset of prostate adenocarcinoma (PACa) cases are treatment-r...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725118/ https://www.ncbi.nlm.nih.gov/pubmed/29245927 http://dx.doi.org/10.18632/oncotarget.20448 |
_version_ | 1783285481792864256 |
---|---|
author | Yoshie, Hidekazu Sedukhina, Anna S. Minagawa, Kimino Oda, Keiko Ohnuma, Shigeko Yanagisawa, Nobuyuki Maeda, Ichiro Takagi, Masayuki Kudo, Hiroya Nakazawa, Ryuto Sasaki, Hideo Kumai, Toshio Chikaraishi, Tatsuya Sato, Ko |
author_facet | Yoshie, Hidekazu Sedukhina, Anna S. Minagawa, Kimino Oda, Keiko Ohnuma, Shigeko Yanagisawa, Nobuyuki Maeda, Ichiro Takagi, Masayuki Kudo, Hiroya Nakazawa, Ryuto Sasaki, Hideo Kumai, Toshio Chikaraishi, Tatsuya Sato, Ko |
author_sort | Yoshie, Hidekazu |
collection | PubMed |
description | Biomarker-driven cancer therapy has met with significant clinical success. Identification of a biomarker implicated in a malignant phenotype and linked to poor clinical outcome is required if we are to develop these types of therapies. A subset of prostate adenocarcinoma (PACa) cases are treatment-resistant, making them an attractive target for such an approach. To identify target molecules implicated in shorter survival of patients with PACa, we established a bioinformatics-to-clinic sequential analysis approach, beginning with 2-step in silico analysis of a TCGA dataset for localized PACa. The effect of candidate genes identified by in silico analysis on survival was then assessed using biopsy specimens taken at the time of initial diagnosis of localized and metastatic PACa. We identified PEG10 as a candidate biomarker. Data from clinical samples suggested that increased expression of PEG10 at the time of initial diagnosis was linked to shorter survival time. Interestingly, PEG10 overexpression also correlated with expression of chromogranin A and synaptophysin, markers for neuroendocrine prostate cancer, a type of treatment-resistant prostate cancer. These results indicate that PEG10 is a novel biomarker for shorter survival of patients with PACa. Also, PEG10 expression at the time of initial diagnosis may predict focal neuroendocrine differentiation of PACa. Thus, PEG10 may be an attractive target for biomarker-driven cancer therapy. Thus, bioinformatics-to-clinic sequential analysis is a valid tool for identifying targets for precision oncology. |
format | Online Article Text |
id | pubmed-5725118 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-57251182017-12-14 A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology? Yoshie, Hidekazu Sedukhina, Anna S. Minagawa, Kimino Oda, Keiko Ohnuma, Shigeko Yanagisawa, Nobuyuki Maeda, Ichiro Takagi, Masayuki Kudo, Hiroya Nakazawa, Ryuto Sasaki, Hideo Kumai, Toshio Chikaraishi, Tatsuya Sato, Ko Oncotarget Research Paper Biomarker-driven cancer therapy has met with significant clinical success. Identification of a biomarker implicated in a malignant phenotype and linked to poor clinical outcome is required if we are to develop these types of therapies. A subset of prostate adenocarcinoma (PACa) cases are treatment-resistant, making them an attractive target for such an approach. To identify target molecules implicated in shorter survival of patients with PACa, we established a bioinformatics-to-clinic sequential analysis approach, beginning with 2-step in silico analysis of a TCGA dataset for localized PACa. The effect of candidate genes identified by in silico analysis on survival was then assessed using biopsy specimens taken at the time of initial diagnosis of localized and metastatic PACa. We identified PEG10 as a candidate biomarker. Data from clinical samples suggested that increased expression of PEG10 at the time of initial diagnosis was linked to shorter survival time. Interestingly, PEG10 overexpression also correlated with expression of chromogranin A and synaptophysin, markers for neuroendocrine prostate cancer, a type of treatment-resistant prostate cancer. These results indicate that PEG10 is a novel biomarker for shorter survival of patients with PACa. Also, PEG10 expression at the time of initial diagnosis may predict focal neuroendocrine differentiation of PACa. Thus, PEG10 may be an attractive target for biomarker-driven cancer therapy. Thus, bioinformatics-to-clinic sequential analysis is a valid tool for identifying targets for precision oncology. Impact Journals LLC 2017-08-24 /pmc/articles/PMC5725118/ /pubmed/29245927 http://dx.doi.org/10.18632/oncotarget.20448 Text en Copyright: © 2017 Yoshie et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Yoshie, Hidekazu Sedukhina, Anna S. Minagawa, Kimino Oda, Keiko Ohnuma, Shigeko Yanagisawa, Nobuyuki Maeda, Ichiro Takagi, Masayuki Kudo, Hiroya Nakazawa, Ryuto Sasaki, Hideo Kumai, Toshio Chikaraishi, Tatsuya Sato, Ko A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology? |
title | A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology? |
title_full | A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology? |
title_fullStr | A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology? |
title_full_unstemmed | A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology? |
title_short | A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology? |
title_sort | bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using tcga datasets and clinical samples: a new method for precision oncology? |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725118/ https://www.ncbi.nlm.nih.gov/pubmed/29245927 http://dx.doi.org/10.18632/oncotarget.20448 |
work_keys_str_mv | AT yoshiehidekazu abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT sedukhinaannas abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT minagawakimino abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT odakeiko abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT ohnumashigeko abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT yanagisawanobuyuki abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT maedaichiro abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT takagimasayuki abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT kudohiroya abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT nakazawaryuto abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT sasakihideo abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT kumaitoshio abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT chikaraishitatsuya abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT satoko abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT yoshiehidekazu bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT sedukhinaannas bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT minagawakimino bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT odakeiko bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT ohnumashigeko bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT yanagisawanobuyuki bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT maedaichiro bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT takagimasayuki bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT kudohiroya bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT nakazawaryuto bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT sasakihideo bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT kumaitoshio bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT chikaraishitatsuya bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology AT satoko bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology |