Cargando…

A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology?

Biomarker-driven cancer therapy has met with significant clinical success. Identification of a biomarker implicated in a malignant phenotype and linked to poor clinical outcome is required if we are to develop these types of therapies. A subset of prostate adenocarcinoma (PACa) cases are treatment-r...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoshie, Hidekazu, Sedukhina, Anna S., Minagawa, Kimino, Oda, Keiko, Ohnuma, Shigeko, Yanagisawa, Nobuyuki, Maeda, Ichiro, Takagi, Masayuki, Kudo, Hiroya, Nakazawa, Ryuto, Sasaki, Hideo, Kumai, Toshio, Chikaraishi, Tatsuya, Sato, Ko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725118/
https://www.ncbi.nlm.nih.gov/pubmed/29245927
http://dx.doi.org/10.18632/oncotarget.20448
_version_ 1783285481792864256
author Yoshie, Hidekazu
Sedukhina, Anna S.
Minagawa, Kimino
Oda, Keiko
Ohnuma, Shigeko
Yanagisawa, Nobuyuki
Maeda, Ichiro
Takagi, Masayuki
Kudo, Hiroya
Nakazawa, Ryuto
Sasaki, Hideo
Kumai, Toshio
Chikaraishi, Tatsuya
Sato, Ko
author_facet Yoshie, Hidekazu
Sedukhina, Anna S.
Minagawa, Kimino
Oda, Keiko
Ohnuma, Shigeko
Yanagisawa, Nobuyuki
Maeda, Ichiro
Takagi, Masayuki
Kudo, Hiroya
Nakazawa, Ryuto
Sasaki, Hideo
Kumai, Toshio
Chikaraishi, Tatsuya
Sato, Ko
author_sort Yoshie, Hidekazu
collection PubMed
description Biomarker-driven cancer therapy has met with significant clinical success. Identification of a biomarker implicated in a malignant phenotype and linked to poor clinical outcome is required if we are to develop these types of therapies. A subset of prostate adenocarcinoma (PACa) cases are treatment-resistant, making them an attractive target for such an approach. To identify target molecules implicated in shorter survival of patients with PACa, we established a bioinformatics-to-clinic sequential analysis approach, beginning with 2-step in silico analysis of a TCGA dataset for localized PACa. The effect of candidate genes identified by in silico analysis on survival was then assessed using biopsy specimens taken at the time of initial diagnosis of localized and metastatic PACa. We identified PEG10 as a candidate biomarker. Data from clinical samples suggested that increased expression of PEG10 at the time of initial diagnosis was linked to shorter survival time. Interestingly, PEG10 overexpression also correlated with expression of chromogranin A and synaptophysin, markers for neuroendocrine prostate cancer, a type of treatment-resistant prostate cancer. These results indicate that PEG10 is a novel biomarker for shorter survival of patients with PACa. Also, PEG10 expression at the time of initial diagnosis may predict focal neuroendocrine differentiation of PACa. Thus, PEG10 may be an attractive target for biomarker-driven cancer therapy. Thus, bioinformatics-to-clinic sequential analysis is a valid tool for identifying targets for precision oncology.
format Online
Article
Text
id pubmed-5725118
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Impact Journals LLC
record_format MEDLINE/PubMed
spelling pubmed-57251182017-12-14 A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology? Yoshie, Hidekazu Sedukhina, Anna S. Minagawa, Kimino Oda, Keiko Ohnuma, Shigeko Yanagisawa, Nobuyuki Maeda, Ichiro Takagi, Masayuki Kudo, Hiroya Nakazawa, Ryuto Sasaki, Hideo Kumai, Toshio Chikaraishi, Tatsuya Sato, Ko Oncotarget Research Paper Biomarker-driven cancer therapy has met with significant clinical success. Identification of a biomarker implicated in a malignant phenotype and linked to poor clinical outcome is required if we are to develop these types of therapies. A subset of prostate adenocarcinoma (PACa) cases are treatment-resistant, making them an attractive target for such an approach. To identify target molecules implicated in shorter survival of patients with PACa, we established a bioinformatics-to-clinic sequential analysis approach, beginning with 2-step in silico analysis of a TCGA dataset for localized PACa. The effect of candidate genes identified by in silico analysis on survival was then assessed using biopsy specimens taken at the time of initial diagnosis of localized and metastatic PACa. We identified PEG10 as a candidate biomarker. Data from clinical samples suggested that increased expression of PEG10 at the time of initial diagnosis was linked to shorter survival time. Interestingly, PEG10 overexpression also correlated with expression of chromogranin A and synaptophysin, markers for neuroendocrine prostate cancer, a type of treatment-resistant prostate cancer. These results indicate that PEG10 is a novel biomarker for shorter survival of patients with PACa. Also, PEG10 expression at the time of initial diagnosis may predict focal neuroendocrine differentiation of PACa. Thus, PEG10 may be an attractive target for biomarker-driven cancer therapy. Thus, bioinformatics-to-clinic sequential analysis is a valid tool for identifying targets for precision oncology. Impact Journals LLC 2017-08-24 /pmc/articles/PMC5725118/ /pubmed/29245927 http://dx.doi.org/10.18632/oncotarget.20448 Text en Copyright: © 2017 Yoshie et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Paper
Yoshie, Hidekazu
Sedukhina, Anna S.
Minagawa, Kimino
Oda, Keiko
Ohnuma, Shigeko
Yanagisawa, Nobuyuki
Maeda, Ichiro
Takagi, Masayuki
Kudo, Hiroya
Nakazawa, Ryuto
Sasaki, Hideo
Kumai, Toshio
Chikaraishi, Tatsuya
Sato, Ko
A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology?
title A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology?
title_full A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology?
title_fullStr A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology?
title_full_unstemmed A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology?
title_short A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology?
title_sort bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using tcga datasets and clinical samples: a new method for precision oncology?
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725118/
https://www.ncbi.nlm.nih.gov/pubmed/29245927
http://dx.doi.org/10.18632/oncotarget.20448
work_keys_str_mv AT yoshiehidekazu abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT sedukhinaannas abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT minagawakimino abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT odakeiko abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT ohnumashigeko abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT yanagisawanobuyuki abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT maedaichiro abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT takagimasayuki abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT kudohiroya abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT nakazawaryuto abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT sasakihideo abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT kumaitoshio abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT chikaraishitatsuya abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT satoko abioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT yoshiehidekazu bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT sedukhinaannas bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT minagawakimino bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT odakeiko bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT ohnumashigeko bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT yanagisawanobuyuki bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT maedaichiro bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT takagimasayuki bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT kudohiroya bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT nakazawaryuto bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT sasakihideo bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT kumaitoshio bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT chikaraishitatsuya bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology
AT satoko bioinformaticstoclinicsequentialapproachtoanalysisofprostatecancerbiomarkersusingtcgadatasetsandclinicalsamplesanewmethodforprecisiononcology