Cargando…

Comparative genome analysis of the vineyard weed endophyte Pseudomonas viridiflava CDRTc14 showing selective herbicidal activity

Microbes produce a variety of secondary metabolites to be explored for herbicidal activities. We investigated an endophyte Pseudomonas viridiflava CDRTc14, which impacted growth of its host Lepidium draba L., to better understand the possible genetic determinants for herbicidal and host-interaction...

Descripción completa

Detalles Bibliográficos
Autores principales: Samad, Abdul, Antonielli, Livio, Sessitsch, Angela, Compant, Stéphane, Trognitz, Friederike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725424/
https://www.ncbi.nlm.nih.gov/pubmed/29229911
http://dx.doi.org/10.1038/s41598-017-16495-y
Descripción
Sumario:Microbes produce a variety of secondary metabolites to be explored for herbicidal activities. We investigated an endophyte Pseudomonas viridiflava CDRTc14, which impacted growth of its host Lepidium draba L., to better understand the possible genetic determinants for herbicidal and host-interaction traits. Inoculation tests with a variety of target plants revealed that CDRTc14 shows plant-specific effects ranging from beneficial to negative. Its herbicidal effect appeared to be dose-dependent and resembled phenotypically the germination arrest factor of Pseudomonas fluorescens WH6. CDRTc14 shares 183 genes with the herbicidal strain WH6 but the formylaminooxyvinylglycine (FVG) biosynthetic genes responsible for germination arrest of WH6 was not detected. CDRTc14 showed phosphate solubilizing ability, indole acetic acid and siderophores production in vitro and harbors genes for these functions. Moreover, genes for quorum sensing, hydrogen cyanide and ACC deaminase production were also found in this strain. Although, CDRTc14 is related to plant pathogens, we neither found a complete pathogenicity island in the genome, nor pathogenicity symptoms on susceptible plant species upon CDRTc14 inoculation. Comparison with other related genomes showed several unique genes involved in abiotic stress tolerance in CDRTc14 like genes responsible for heavy metal and herbicide resistance indicating recent adaptation to plant protection measures applied in vineyards.