Cargando…
Receptor-associated prorenin system contributes to development of inflammation and angiogenesis in proliferative diabetic retinopathy
The renin-angiotensin system (RAS) plays a potential role in the development of end-organ damage, and tissue RAS activation has been suggested as a risk factor of several diseases including diabetes. So far, using animal disease models, we have shown molecular mechanisms, in which tissue RAS stimula...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725647/ https://www.ncbi.nlm.nih.gov/pubmed/29259695 http://dx.doi.org/10.1186/s41232-016-0027-0 |
_version_ | 1783285573736202240 |
---|---|
author | Kanda, Atsuhiro Ishida, Susumu |
author_facet | Kanda, Atsuhiro Ishida, Susumu |
author_sort | Kanda, Atsuhiro |
collection | PubMed |
description | The renin-angiotensin system (RAS) plays a potential role in the development of end-organ damage, and tissue RAS activation has been suggested as a risk factor of several diseases including diabetes. So far, using animal disease models, we have shown molecular mechanisms, in which tissue RAS stimulates retinal angiogenesis, and the critical roles of (pro)renin receptor [(P)RR] in retinal RAS activation and its concurrent intracellular signal transduction, referred to as the receptor-associated prorenin system (RAPS). Moreover, we recently reported that the protein levels of prorenin and soluble (P)RR increased in the vitreous fluids obtained from patients with proliferative diabetic retinopathy (PDR), suggesting the association of (P)RR with vascular endothelial growth factor (VEGF)-driven angiogenic activity in human PDR, and also showed a close relationship between the vitreous renin activity and VEGF-induced pathogenesis of diabetic retinopathy. Our data using animal disease models and human clinical samples suggest that both vitreous RAS and retinal RAPS play critical roles in the molecular pathogenesis of diabetic retinopathy. |
format | Online Article Text |
id | pubmed-5725647 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-57256472017-12-19 Receptor-associated prorenin system contributes to development of inflammation and angiogenesis in proliferative diabetic retinopathy Kanda, Atsuhiro Ishida, Susumu Inflamm Regen Review The renin-angiotensin system (RAS) plays a potential role in the development of end-organ damage, and tissue RAS activation has been suggested as a risk factor of several diseases including diabetes. So far, using animal disease models, we have shown molecular mechanisms, in which tissue RAS stimulates retinal angiogenesis, and the critical roles of (pro)renin receptor [(P)RR] in retinal RAS activation and its concurrent intracellular signal transduction, referred to as the receptor-associated prorenin system (RAPS). Moreover, we recently reported that the protein levels of prorenin and soluble (P)RR increased in the vitreous fluids obtained from patients with proliferative diabetic retinopathy (PDR), suggesting the association of (P)RR with vascular endothelial growth factor (VEGF)-driven angiogenic activity in human PDR, and also showed a close relationship between the vitreous renin activity and VEGF-induced pathogenesis of diabetic retinopathy. Our data using animal disease models and human clinical samples suggest that both vitreous RAS and retinal RAPS play critical roles in the molecular pathogenesis of diabetic retinopathy. BioMed Central 2016-09-07 /pmc/articles/PMC5725647/ /pubmed/29259695 http://dx.doi.org/10.1186/s41232-016-0027-0 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Review Kanda, Atsuhiro Ishida, Susumu Receptor-associated prorenin system contributes to development of inflammation and angiogenesis in proliferative diabetic retinopathy |
title | Receptor-associated prorenin system contributes to development of inflammation and angiogenesis in proliferative diabetic retinopathy |
title_full | Receptor-associated prorenin system contributes to development of inflammation and angiogenesis in proliferative diabetic retinopathy |
title_fullStr | Receptor-associated prorenin system contributes to development of inflammation and angiogenesis in proliferative diabetic retinopathy |
title_full_unstemmed | Receptor-associated prorenin system contributes to development of inflammation and angiogenesis in proliferative diabetic retinopathy |
title_short | Receptor-associated prorenin system contributes to development of inflammation and angiogenesis in proliferative diabetic retinopathy |
title_sort | receptor-associated prorenin system contributes to development of inflammation and angiogenesis in proliferative diabetic retinopathy |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725647/ https://www.ncbi.nlm.nih.gov/pubmed/29259695 http://dx.doi.org/10.1186/s41232-016-0027-0 |
work_keys_str_mv | AT kandaatsuhiro receptorassociatedproreninsystemcontributestodevelopmentofinflammationandangiogenesisinproliferativediabeticretinopathy AT ishidasusumu receptorassociatedproreninsystemcontributestodevelopmentofinflammationandangiogenesisinproliferativediabeticretinopathy |