Cargando…

Mannitol and the blood-labyrinth barrier

BACKGROUND: Characterization of the blood labyrinth barrier (BLB) is extremely important to determine whether the BLB can be manipulated pharmacologically. However, experiments to investigate the BLB are technically difficult to perform. In this report, we demonstrated a unique method of controlling...

Descripción completa

Detalles Bibliográficos
Autores principales: Le, Trung N., Blakley, Brian W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725891/
https://www.ncbi.nlm.nih.gov/pubmed/29228990
http://dx.doi.org/10.1186/s40463-017-0245-8
_version_ 1783285627116060672
author Le, Trung N.
Blakley, Brian W.
author_facet Le, Trung N.
Blakley, Brian W.
author_sort Le, Trung N.
collection PubMed
description BACKGROUND: Characterization of the blood labyrinth barrier (BLB) is extremely important to determine whether the BLB can be manipulated pharmacologically. However, experiments to investigate the BLB are technically difficult to perform. In this report, we demonstrated a unique method of controlling the BLB, and established the pharmacokinetics of gentamicin in perilymph, cerebrospinal fluid (CSF) and blood with and without mannitol. STUDY DESIGN: Controlled animal research project. METHODS: Permeability of the BLB and the blood brain barrier (BBB) to gentamicin with and without mannitol was studied by collecting 175 samples from 44 guinea pigs using concentrations relevant to human clinical situations. Samples were taken from two groups of 22 animals, with each animal undergoing sampling at a different time after administration of either 10 mg/ml gentamicin (4 mg/kg) (Gardena, CA) alone or gentamicin with 20% mannitol (250 mg/kg) (Mallinckrodt Inc., KY). The sample times varied from 0.5 to 17.5 h post-infusion. Samples were also taken from 4 animals as negative controls after administration of normal saline. Our goal was to simultaneously assess the pharmacokinetics of gentamicin in each of three different fluid samples in the same animal. Thus at the pre-determined post-infusion sampling time, each animal was sampled once for perilymph, CSF, and blood before being euthanized. Each animal contributed to a single time point on the subsequent pharmacokinetic curves with more than one animal per time point. RESULTS: Mannitol increased the rate of entry and egress of gentamicin through BLB significantly (p = 0.0044) but the effects on the BBB did not reach statistical significance (p = 0.581). Mannitol did not alter renal clearance of gentamicin from the blood (p = 0.433). The concentration of gentamicin in perilymph and CSF was always significantly lower than in blood. CONCLUSIONS: Mannitol administration transiently increases the permeability of the BLB. Potential clinical benefits may accrue from selected timing of administration of osmotic agents such as mannitol augmenting the rate of entry and egress of compounds such as gentamicin into and out of perilymph.
format Online
Article
Text
id pubmed-5725891
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-57258912017-12-13 Mannitol and the blood-labyrinth barrier Le, Trung N. Blakley, Brian W. J Otolaryngol Head Neck Surg Original Research Article BACKGROUND: Characterization of the blood labyrinth barrier (BLB) is extremely important to determine whether the BLB can be manipulated pharmacologically. However, experiments to investigate the BLB are technically difficult to perform. In this report, we demonstrated a unique method of controlling the BLB, and established the pharmacokinetics of gentamicin in perilymph, cerebrospinal fluid (CSF) and blood with and without mannitol. STUDY DESIGN: Controlled animal research project. METHODS: Permeability of the BLB and the blood brain barrier (BBB) to gentamicin with and without mannitol was studied by collecting 175 samples from 44 guinea pigs using concentrations relevant to human clinical situations. Samples were taken from two groups of 22 animals, with each animal undergoing sampling at a different time after administration of either 10 mg/ml gentamicin (4 mg/kg) (Gardena, CA) alone or gentamicin with 20% mannitol (250 mg/kg) (Mallinckrodt Inc., KY). The sample times varied from 0.5 to 17.5 h post-infusion. Samples were also taken from 4 animals as negative controls after administration of normal saline. Our goal was to simultaneously assess the pharmacokinetics of gentamicin in each of three different fluid samples in the same animal. Thus at the pre-determined post-infusion sampling time, each animal was sampled once for perilymph, CSF, and blood before being euthanized. Each animal contributed to a single time point on the subsequent pharmacokinetic curves with more than one animal per time point. RESULTS: Mannitol increased the rate of entry and egress of gentamicin through BLB significantly (p = 0.0044) but the effects on the BBB did not reach statistical significance (p = 0.581). Mannitol did not alter renal clearance of gentamicin from the blood (p = 0.433). The concentration of gentamicin in perilymph and CSF was always significantly lower than in blood. CONCLUSIONS: Mannitol administration transiently increases the permeability of the BLB. Potential clinical benefits may accrue from selected timing of administration of osmotic agents such as mannitol augmenting the rate of entry and egress of compounds such as gentamicin into and out of perilymph. BioMed Central 2017-12-11 /pmc/articles/PMC5725891/ /pubmed/29228990 http://dx.doi.org/10.1186/s40463-017-0245-8 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Original Research Article
Le, Trung N.
Blakley, Brian W.
Mannitol and the blood-labyrinth barrier
title Mannitol and the blood-labyrinth barrier
title_full Mannitol and the blood-labyrinth barrier
title_fullStr Mannitol and the blood-labyrinth barrier
title_full_unstemmed Mannitol and the blood-labyrinth barrier
title_short Mannitol and the blood-labyrinth barrier
title_sort mannitol and the blood-labyrinth barrier
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725891/
https://www.ncbi.nlm.nih.gov/pubmed/29228990
http://dx.doi.org/10.1186/s40463-017-0245-8
work_keys_str_mv AT letrungn mannitolandthebloodlabyrinthbarrier
AT blakleybrianw mannitolandthebloodlabyrinthbarrier