Cargando…
Habitat modification by invasive crayfish can facilitate its growth through enhanced food accessibility
BACKGROUND: Invasive ecosystem engineers can facilitate their invasions by modifying the physical environment to improve their own performance, but this positive feedback process has rarely been tested empirically except in sessile organisms. The invasive crayfish Procambarus clarkii is an ecosystem...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725987/ https://www.ncbi.nlm.nih.gov/pubmed/29228938 http://dx.doi.org/10.1186/s12898-017-0147-7 |
Sumario: | BACKGROUND: Invasive ecosystem engineers can facilitate their invasions by modifying the physical environment to improve their own performance, but this positive feedback process has rarely been tested empirically except in sessile organisms. The invasive crayfish Procambarus clarkii is an ecosystem engineer that destroys aquatic macrophytes, which provide a physical refuge for animal prey, and this destruction is likely to enhance vulnerability to predators. Using two series of mesocosm experiments, we tested the hypothesis that the invasive crayfish increases its feeding efficiency on animal prey by reducing submerged macrophytes, thus increasing its individual growth rate in a positive density-dependent manner. RESULTS: In the first experiment, increasing crayfish density reduced both macrophytes and animal prey (dragonfly and chironomid larvae) and, importantly, increased the growth rate of individual crayfish, in accordance with our expectation. In the second experiment, we used artificial macrophytes to clarify whether the physical architecture of macrophytes itself protects animal prey and limits crayfish growth rate. Increasing the artificial macrophyte quantity not only increased the survival of animal prey, but also retarded the crayfish growth rate. CONCLUSIONS: We conclude that macrophytes strengthen bottom-up control of crayfish, but this effect can be relaxed by increasing the density of crayfish via reduction in macrophytes. This positive feedback process may explain the crayfish outbreaks and regime shifts occasionally observed in invaded freshwater ecosystems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12898-017-0147-7) contains supplementary material, which is available to authorized users. |
---|