Cargando…

Salidroside attenuates hypoxia-induced pulmonary arterial smooth muscle cell proliferation and apoptosis resistance by upregulating autophagy through the AMPK-mTOR-ULK1 pathway

BACKGROUND: Recent studies have shown that both adenosine monophosphate activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) are energy sensors and are related to autophagy. Our recent reports have shown that salidroside can exert protective effects against hypoxia-induced pu...

Descripción completa

Detalles Bibliográficos
Autores principales: Gui, Di, Cui, Zhimin, Zhang, Lin, Yu, Chang, Yao, Dan, Xu, Min, Chen, Mayun, Wu, Peiliang, Li, Guoping, Wang, Liangxing, Huang, Xiaoying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726034/
https://www.ncbi.nlm.nih.gov/pubmed/29233105
http://dx.doi.org/10.1186/s12890-017-0477-4
_version_ 1783285657819414528
author Gui, Di
Cui, Zhimin
Zhang, Lin
Yu, Chang
Yao, Dan
Xu, Min
Chen, Mayun
Wu, Peiliang
Li, Guoping
Wang, Liangxing
Huang, Xiaoying
author_facet Gui, Di
Cui, Zhimin
Zhang, Lin
Yu, Chang
Yao, Dan
Xu, Min
Chen, Mayun
Wu, Peiliang
Li, Guoping
Wang, Liangxing
Huang, Xiaoying
author_sort Gui, Di
collection PubMed
description BACKGROUND: Recent studies have shown that both adenosine monophosphate activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) are energy sensors and are related to autophagy. Our recent reports have shown that salidroside can exert protective effects against hypoxia-induced pulmonary arterial smooth muscle cell (PASMC) proliferation and apoptosis resistance through the AMPK pathway. This study aims to explore the relationship among AMPK, mTOR and ULK1 in PASMCs under hypoxic conditions and to investigate whether the protective effects of salidroside are related to the autophagic cell death pathway. METHODS: Rat PASMCs were cultured and divided into five groups: the normoxia, hypoxia, hypoxia + MHY1485 (mTOR agonist), hypoxia + rapamycin (mTOR inhibitor) and hypoxia + salidroside groups. Hypoxic cells were treated as indicated for 24 h. Cell viability was evaluated by the CCK-8 assay. Cell apoptosis was measured by the TUNEL assay. The autophagy flux of PASMCs was evaluated with tandem mRFP-GFP fluorescence microscopy. Autophagosomes were detected by electron microscopy. Protein expression of LC3, p62, AMPK, P-AMPK (Thr 172), P-ULK1 (Ser 555 and Ser 317), mTOR, P-mTOR (Ser 2448), ULK1 and P-ULK1 (Ser 757) was detected by western blot assay. RESULTS: PASMC proliferation and apoptosis resistance were observed under hypoxic conditions. Autophagy flux, the number of autophagosomes and the LC3II/LC3I ratio were increased in the hypoxia group compared with the normoxia group, whereas p62 expression was decreased. Treatment with rapamycin or salidroside reversed hypoxia-induced PASMC proliferation and apoptosis resistance and further increased autophagy flux, autophagosome levels and the LC3II/LC3I ratio but decreased p62 expression. Treatment with MHY1485 reversed hypoxia-induced PASMC apoptosis resistance and decreased autophagy flux as well as increased autophagosome levels, the LC3II/LC3I ratio and p62 expression. P-AMPK (Thr 172) and P-ULK1 (Ser 555) of the AMPK-ULK1 pathway were increased in the hypoxia group and were further increased in the salidroside group. Rapamycin and MHY1485 had no effect on either P-AMPK (Thr 172) or P-ULK1 (Ser 555). Phosphorylation of ULK1 at serine 317 did not significantly affect the five groups. Furthermore, P-mTOR (Ser 2448) and P-ULK1 (Ser 757) of the AMPK-mTOR-ULK1 pathway were decreased in the hypoxia group and were further decreased in the salidroside group. MHY1485 increased the expression of both P-mTOR(Ser 2448) and P-ULK1(Ser 757), whereas rapamycin had the opposite effect. CONCLUSIONS: Salidroside might inhibit hypoxia-induced PASMC proliferation and reverse apoptosis resistance via the upregulation of autophagy through both the AMPKα1-ULK1 and AMPKα1-mTOR-ULK1 pathways.
format Online
Article
Text
id pubmed-5726034
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-57260342017-12-13 Salidroside attenuates hypoxia-induced pulmonary arterial smooth muscle cell proliferation and apoptosis resistance by upregulating autophagy through the AMPK-mTOR-ULK1 pathway Gui, Di Cui, Zhimin Zhang, Lin Yu, Chang Yao, Dan Xu, Min Chen, Mayun Wu, Peiliang Li, Guoping Wang, Liangxing Huang, Xiaoying BMC Pulm Med Research Article BACKGROUND: Recent studies have shown that both adenosine monophosphate activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) are energy sensors and are related to autophagy. Our recent reports have shown that salidroside can exert protective effects against hypoxia-induced pulmonary arterial smooth muscle cell (PASMC) proliferation and apoptosis resistance through the AMPK pathway. This study aims to explore the relationship among AMPK, mTOR and ULK1 in PASMCs under hypoxic conditions and to investigate whether the protective effects of salidroside are related to the autophagic cell death pathway. METHODS: Rat PASMCs were cultured and divided into five groups: the normoxia, hypoxia, hypoxia + MHY1485 (mTOR agonist), hypoxia + rapamycin (mTOR inhibitor) and hypoxia + salidroside groups. Hypoxic cells were treated as indicated for 24 h. Cell viability was evaluated by the CCK-8 assay. Cell apoptosis was measured by the TUNEL assay. The autophagy flux of PASMCs was evaluated with tandem mRFP-GFP fluorescence microscopy. Autophagosomes were detected by electron microscopy. Protein expression of LC3, p62, AMPK, P-AMPK (Thr 172), P-ULK1 (Ser 555 and Ser 317), mTOR, P-mTOR (Ser 2448), ULK1 and P-ULK1 (Ser 757) was detected by western blot assay. RESULTS: PASMC proliferation and apoptosis resistance were observed under hypoxic conditions. Autophagy flux, the number of autophagosomes and the LC3II/LC3I ratio were increased in the hypoxia group compared with the normoxia group, whereas p62 expression was decreased. Treatment with rapamycin or salidroside reversed hypoxia-induced PASMC proliferation and apoptosis resistance and further increased autophagy flux, autophagosome levels and the LC3II/LC3I ratio but decreased p62 expression. Treatment with MHY1485 reversed hypoxia-induced PASMC apoptosis resistance and decreased autophagy flux as well as increased autophagosome levels, the LC3II/LC3I ratio and p62 expression. P-AMPK (Thr 172) and P-ULK1 (Ser 555) of the AMPK-ULK1 pathway were increased in the hypoxia group and were further increased in the salidroside group. Rapamycin and MHY1485 had no effect on either P-AMPK (Thr 172) or P-ULK1 (Ser 555). Phosphorylation of ULK1 at serine 317 did not significantly affect the five groups. Furthermore, P-mTOR (Ser 2448) and P-ULK1 (Ser 757) of the AMPK-mTOR-ULK1 pathway were decreased in the hypoxia group and were further decreased in the salidroside group. MHY1485 increased the expression of both P-mTOR(Ser 2448) and P-ULK1(Ser 757), whereas rapamycin had the opposite effect. CONCLUSIONS: Salidroside might inhibit hypoxia-induced PASMC proliferation and reverse apoptosis resistance via the upregulation of autophagy through both the AMPKα1-ULK1 and AMPKα1-mTOR-ULK1 pathways. BioMed Central 2017-12-12 /pmc/articles/PMC5726034/ /pubmed/29233105 http://dx.doi.org/10.1186/s12890-017-0477-4 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Gui, Di
Cui, Zhimin
Zhang, Lin
Yu, Chang
Yao, Dan
Xu, Min
Chen, Mayun
Wu, Peiliang
Li, Guoping
Wang, Liangxing
Huang, Xiaoying
Salidroside attenuates hypoxia-induced pulmonary arterial smooth muscle cell proliferation and apoptosis resistance by upregulating autophagy through the AMPK-mTOR-ULK1 pathway
title Salidroside attenuates hypoxia-induced pulmonary arterial smooth muscle cell proliferation and apoptosis resistance by upregulating autophagy through the AMPK-mTOR-ULK1 pathway
title_full Salidroside attenuates hypoxia-induced pulmonary arterial smooth muscle cell proliferation and apoptosis resistance by upregulating autophagy through the AMPK-mTOR-ULK1 pathway
title_fullStr Salidroside attenuates hypoxia-induced pulmonary arterial smooth muscle cell proliferation and apoptosis resistance by upregulating autophagy through the AMPK-mTOR-ULK1 pathway
title_full_unstemmed Salidroside attenuates hypoxia-induced pulmonary arterial smooth muscle cell proliferation and apoptosis resistance by upregulating autophagy through the AMPK-mTOR-ULK1 pathway
title_short Salidroside attenuates hypoxia-induced pulmonary arterial smooth muscle cell proliferation and apoptosis resistance by upregulating autophagy through the AMPK-mTOR-ULK1 pathway
title_sort salidroside attenuates hypoxia-induced pulmonary arterial smooth muscle cell proliferation and apoptosis resistance by upregulating autophagy through the ampk-mtor-ulk1 pathway
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726034/
https://www.ncbi.nlm.nih.gov/pubmed/29233105
http://dx.doi.org/10.1186/s12890-017-0477-4
work_keys_str_mv AT guidi salidrosideattenuateshypoxiainducedpulmonaryarterialsmoothmusclecellproliferationandapoptosisresistancebyupregulatingautophagythroughtheampkmtorulk1pathway
AT cuizhimin salidrosideattenuateshypoxiainducedpulmonaryarterialsmoothmusclecellproliferationandapoptosisresistancebyupregulatingautophagythroughtheampkmtorulk1pathway
AT zhanglin salidrosideattenuateshypoxiainducedpulmonaryarterialsmoothmusclecellproliferationandapoptosisresistancebyupregulatingautophagythroughtheampkmtorulk1pathway
AT yuchang salidrosideattenuateshypoxiainducedpulmonaryarterialsmoothmusclecellproliferationandapoptosisresistancebyupregulatingautophagythroughtheampkmtorulk1pathway
AT yaodan salidrosideattenuateshypoxiainducedpulmonaryarterialsmoothmusclecellproliferationandapoptosisresistancebyupregulatingautophagythroughtheampkmtorulk1pathway
AT xumin salidrosideattenuateshypoxiainducedpulmonaryarterialsmoothmusclecellproliferationandapoptosisresistancebyupregulatingautophagythroughtheampkmtorulk1pathway
AT chenmayun salidrosideattenuateshypoxiainducedpulmonaryarterialsmoothmusclecellproliferationandapoptosisresistancebyupregulatingautophagythroughtheampkmtorulk1pathway
AT wupeiliang salidrosideattenuateshypoxiainducedpulmonaryarterialsmoothmusclecellproliferationandapoptosisresistancebyupregulatingautophagythroughtheampkmtorulk1pathway
AT liguoping salidrosideattenuateshypoxiainducedpulmonaryarterialsmoothmusclecellproliferationandapoptosisresistancebyupregulatingautophagythroughtheampkmtorulk1pathway
AT wangliangxing salidrosideattenuateshypoxiainducedpulmonaryarterialsmoothmusclecellproliferationandapoptosisresistancebyupregulatingautophagythroughtheampkmtorulk1pathway
AT huangxiaoying salidrosideattenuateshypoxiainducedpulmonaryarterialsmoothmusclecellproliferationandapoptosisresistancebyupregulatingautophagythroughtheampkmtorulk1pathway