Cargando…

Wastewater influences nitrogen dynamics in a coastal catchment during a prolonged drought

Ecosystem function measurements can enhance our understanding of nitrogen (N) delivery in coastal catchments across river and estuary ecosystems. Here, we contrast patterns of N cycling and export in two rivers, one heavily influenced by wastewater treatment plants (WWTP), in a coastal catchment of...

Descripción completa

Detalles Bibliográficos
Autores principales: Bruesewitz, Denise A., Hoellein, Timothy J., Mooney, Rae F., Gardner, Wayne S., Buskey, Edward J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726386/
https://www.ncbi.nlm.nih.gov/pubmed/29263559
http://dx.doi.org/10.1002/lno.10576
Descripción
Sumario:Ecosystem function measurements can enhance our understanding of nitrogen (N) delivery in coastal catchments across river and estuary ecosystems. Here, we contrast patterns of N cycling and export in two rivers, one heavily influenced by wastewater treatment plants (WWTP), in a coastal catchment of south Texas. We measured N export from both rivers to the estuary over 2 yr that encompass a severe drought, along with detailed mechanisms of N cycling in river, tidal river, and two estuary sites during prolonged drought. WWTP nutrient inputs stimulated uptake of N, but denitrification resulting in permanent N removal accounted for only a small proportion of total uptake. During drought periods, WWTP N was the primary source of exported N to the estuary, minimizing the influence of episodic storm‐derived nutrients from the WWTP‐influenced river to the estuary. In the site without WWTP influence, the river exported very little N during drought, so storm‐derived nutrient pulses were important for delivering N loads to the estuary. Overall, N is processed from river to estuary, but sustained WWTP‐N loads and periodic floods alter the timing of N delivery and N processing. Research that incorporates empirical measurements of N fluxes from river to estuary can inform management needs in the face of multiple anthropogenic stressors such as demand for freshwater and eutrophication.