Cargando…
Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts
Mathematical models provide a quantitative framework with which scientists can assess hypotheses on the potential underlying mechanisms that explain patterns in observed data at different spatial and temporal scales, generate estimates of key kinetic parameters, assess the impact of interventions, o...
Autor principal: | Chowell, Gerardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726591/ https://www.ncbi.nlm.nih.gov/pubmed/29250607 http://dx.doi.org/10.1016/j.idm.2017.08.001 |
Ejemplares similares
-
Quantifying Model Form Uncertainty of Epidemic Forecasting Models
from Incidence Data
por: Hengartner, Nicolas, et al.
Publicado: (2018) -
Ensemble bootstrap methodology for forecasting dynamic growth processes using differential equations: application to epidemic outbreaks
por: Chowell, Gerardo, et al.
Publicado: (2021) -
A MATLAB toolbox to fit and forecast growth trajectories using phenomenological growth models: Application to epidemic outbreaks
por: Chowell, Gerardo, et al.
Publicado: (2023) -
Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting
por: Murad, Abdulmajid, et al.
Publicado: (2021) -
A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature Forecasts
por: Bal, Guillaume, et al.
Publicado: (2014)