Cargando…
Low-energy extracorporeal shockwave therapy (ESWT) improves metaphyseal fracture healing in an osteoporotic rat model
PURPOSE: As result of the current demographic changes, osteoporosis and osteoporotic fractures are becoming an increasing social and economic burden. In this experimental study, extracorporeal shock wave therapy (ESWT), was evaluated as a treatment option for the improvement of osteoporotic fracture...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726728/ https://www.ncbi.nlm.nih.gov/pubmed/29232698 http://dx.doi.org/10.1371/journal.pone.0189356 |
Sumario: | PURPOSE: As result of the current demographic changes, osteoporosis and osteoporotic fractures are becoming an increasing social and economic burden. In this experimental study, extracorporeal shock wave therapy (ESWT), was evaluated as a treatment option for the improvement of osteoporotic fracture healing. METHODS: A well-established fracture model in the metaphyseal tibia in the osteoporotic rat was used. 132 animals were divided into 11 groups, with 12 animals each, consisting of one sham-operated group and 10 ovariectomized (osteoporotic) groups, of which 9 received ESWT treatment. Different energy flux intensities (0.15 mJ/mm(2), 0.35 mJ/mm(2), or 0.55 mJ/mm(2)) as well as different numbers of ESWT applications (once, three times, or five times throughout the 35-day healing period) were applied to the osteoporotic fractures. Fracture healing was investigated quantitatively and qualitatively using micro-CT imaging, quantitative real-time polymerase chain reaction (qRT-PCR) analysis, histomorphometric analysis and biomechanical analysis. RESULTS: The results of this study show a qualitative and quantitative improvement in the osteoporotic fracture healing under low-energy (energy flux intensity: 0,15 mJ/mm(2)) ESWT and with fewer treatment applications per healing period. CONCLUSION: In conclusion, low-energy ESWT seems to exhibit a beneficial effect on the healing of osteoporotic fractures, leading to improved biomechanical properties, enhanced callus-quantity and -quality, and an increase in the expression of bone specific transcription factors. The results suggest that low-energy ESWT, as main treatment or as adjunctive treatment in addition to a surgical intervention, may prove to be an effective, simple to use, and cost-efficient option for the qualitative and quantitative improvement of osteoporotic fracture healing. |
---|