Cargando…

Engineering peptide ligase specificity by proteomic identification of ligation sites

Enzyme-catalyzed peptide ligation is a powerful tool for site-specific protein bioconjugation, but stringent enzyme–substrate specificity limits its utility. Here, we present an approach for comprehensive characterization of peptide ligase specificity for N termini using proteome-derived peptide lib...

Descripción completa

Detalles Bibliográficos
Autores principales: Weeks, Amy M., Wells, James A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726896/
https://www.ncbi.nlm.nih.gov/pubmed/29155430
http://dx.doi.org/10.1038/nchembio.2521
Descripción
Sumario:Enzyme-catalyzed peptide ligation is a powerful tool for site-specific protein bioconjugation, but stringent enzyme–substrate specificity limits its utility. Here, we present an approach for comprehensive characterization of peptide ligase specificity for N termini using proteome-derived peptide libraries. We used this strategy to characterize the ligation efficiency for >25,000 enzyme–substrate pairs in the context of the engineered peptide ligase subtiligase and identified a family of 72 mutant subtiligases with activity toward N-terminal sequences that were previously recalcitrant to modification. We applied these mutants individually for site-specific bioconjugation of purified proteins including antibodies, and in algorithmically selected combinations for sequencing of the cellular N terminome with reduced sequence bias. We also developed a web application to enable algorithmic selection of the most efficient subtiligase variant(s) for bioconjugation to user-defined sequences. These studies provide a new toolbox of enzymes for site-specific protein modification and a general approach for rapidly defining and engineering peptide ligase specificity.