Cargando…
Modeling and optimization of thermal conductivity and viscosity of MnFe(2)O(4) nanofluid under magnetic field using an ANN
This research investigates the applicability of an ANN and genetic algorithms for modeling and multiobjective optimization of the thermal conductivity and viscosity of water-based spinel-type MnFe(2)O(4) nanofluid. Levenberg-Marquardt, quasi-Newton, and resilient backpropagation methods are employed...
Autores principales: | Amani, Mohammad, Amani, Pouria, Kasaeian, Alibakhsh, Mahian, Omid, Pop, Ioan, Wongwises, Somchai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727064/ https://www.ncbi.nlm.nih.gov/pubmed/29234090 http://dx.doi.org/10.1038/s41598-017-17444-5 |
Ejemplares similares
-
Comparative Study of Carbon Nanosphere and Carbon Nanopowder on Viscosity and Thermal Conductivity of Nanofluids
por: Ba, Thong Le, et al.
Publicado: (2021) -
How to Encourage Best Peer Reviewers: An Empiric Approach
por: Mahian, Omid, et al.
Publicado: (2015) -
Entropy in Nanofluids
por: Lorenzini, Giulio, et al.
Publicado: (2018) -
Cation, magnetic, and charge ordering in MnFe(3)O(5)
por: Hong, K. H., et al.
Publicado: (2018) -
A Novel Experimental Study on the Rheological Properties and Thermal Conductivity of Halloysite Nanofluids
por: Le Ba, Thong, et al.
Publicado: (2020)