Cargando…

First demonstration of coherent Cherenkov radiation matched to circular plane wave

We observed coherent Cherenkov radiation matched to a circular plane wave (CCR-MCP) for the first time using a hollow conical dielectric made of a high-density polyethylene. The refractive index and the absorption coefficient of the dielectric were evaluated to be 1.537 ± 0.004 and 0.006 ± 0.028 by...

Descripción completa

Detalles Bibliográficos
Autores principales: Sei, Norihiro, Takahashi, Toshiharu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727164/
https://www.ncbi.nlm.nih.gov/pubmed/29234106
http://dx.doi.org/10.1038/s41598-017-17822-z
Descripción
Sumario:We observed coherent Cherenkov radiation matched to a circular plane wave (CCR-MCP) for the first time using a hollow conical dielectric made of a high-density polyethylene. The refractive index and the absorption coefficient of the dielectric were evaluated to be 1.537 ± 0.004 and 0.006 ± 0.028 by measuring the pulse formed by the interference between the CCR-MCP and the coherent diffraction radiation. These values were consistent with the values shown in a reference for the high-density polyethylene. In accordance with the theory of the Cherenkov radiation, the spectrum of the CCR-MCP shifted towards higher wavenumbers compared to that of the coherent diffraction radiation. The intensity of the CCR-MCP beam was proportional to the height of the hollow conical dielectric and was 3 times the intensity of the coherent diffraction radiation. The CCR-MCP technique can produce broadband terahertz-wave sources with unprecedented power at compact accelerator facilities.