Cargando…
Modelling of the impact of universal added sugar reduction through food reformulation
Food reformulation has been suggested to be one of the strategies to reduce population added sugar (AS) intake. This study aims to investigate the untested assumption that a reduction in AS through reformulation will result in a reduction in population intakes of AS and energy. Plausible dietary dat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727294/ https://www.ncbi.nlm.nih.gov/pubmed/29234031 http://dx.doi.org/10.1038/s41598-017-17417-8 |
Sumario: | Food reformulation has been suggested to be one of the strategies to reduce population added sugar (AS) intake. This study aims to investigate the untested assumption that a reduction in AS through reformulation will result in a reduction in population intakes of AS and energy. Plausible dietary data from 4,140 respondents of an Australian national nutrition survey were used. Dietary modelling was performed at AS reductions of 10%, 15%, and 25% using four strategies: simple removal of AS or replacement with non-nutritive sweeteners (NNS), and replacement of AS with NNS and either: polyols, 50% fibres or 50% maltodextrin. Paired t-tests were conducted to compare the intake of energy, fat, and AS pre- and post-reformulation. The chosen reformulation strategies resulted in a projected reduction in AS and energy, with the greatest reduction found in 25% reformulation which was the highest level modelled. The overall projected mean (SD) reduction in energy and AS after 25% reformulation was 114 (92) kJ/day and 11.73 (7.52) g/day, p < 0.001. To conclude, product reformulation may be a potentially useful strategy for reducing AS intake. Although the magnitude of projected reduction was small at the individual level, the impact may be meaningful at a population level. |
---|