Cargando…

Strengthening face centered cubic crystals by annealing induced nano-twins

Usually, cold working strengthen metals and alloys by introducing large population of dislocations, whereas annealing of cold worked metal recovers the structure, annihilates dislocations, forms new strain-free grains, and results loss of strength. Here, we report annealing-hardening at temperature...

Descripción completa

Detalles Bibliográficos
Autores principales: Roy, Barna, Das, Jayanta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727482/
https://www.ncbi.nlm.nih.gov/pubmed/29235519
http://dx.doi.org/10.1038/s41598-017-17848-3
Descripción
Sumario:Usually, cold working strengthen metals and alloys by introducing large population of dislocations, whereas annealing of cold worked metal recovers the structure, annihilates dislocations, forms new strain-free grains, and results loss of strength. Here, we report annealing-hardening at temperature well below stress relieving and recrystallization temperatures in contrast to the typical behavior. A large amount of structural defects, such as dislocations, grain boundaries, twins, and stacking faults, have been introduced in nanostructured α-brass by cryorolling. The interaction and rearrangement of these defects upon annealing at 165–200 °C have been monitored at an interval of 1 minute. Large increase of the yield strength up to 578 MPa has been achieved in annealed specimens, which is 23% higher than that of as-cryorolled, and 425% higher than that of as-cast brass due to the evolution of nano-twins. Our approach shows a new avenue on strengthening fcc crystals by incorporating annealing induced nano-twins.