Cargando…
Infrared actuation-induced simultaneous reconfiguration of surface color and morphology for soft robotics
Cephalopods, such as cuttlefish, demonstrate remarkable adaptability to the coloration and texture of their surroundings by modulating their skin color and surface morphology simultaneously, for the purpose of adaptive camouflage and signal communication. Inspired by this unique feature of cuttlefis...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727498/ https://www.ncbi.nlm.nih.gov/pubmed/29235521 http://dx.doi.org/10.1038/s41598-017-17904-y |
Sumario: | Cephalopods, such as cuttlefish, demonstrate remarkable adaptability to the coloration and texture of their surroundings by modulating their skin color and surface morphology simultaneously, for the purpose of adaptive camouflage and signal communication. Inspired by this unique feature of cuttlefish skins, we present a general approach to remote-controlled, smart films that undergo simultaneous changes of surface color and morphology upon infrared (IR) actuation. The smart film has a reconfigurable laminated structure that comprises an IR-responsive nanocomposite actuator layer and a mechanochromic elastomeric photonic crystal layer. Upon global or localized IR irradiation, the actuator layer exhibits fast, large, and reversible strain in the irradiated region, which causes a synergistically coupled change in the shape of the laminated film and color of the mechanochromic elastomeric photonic crystal layer in the same region. Bending and twisting deformations can be created under IR irradiation, through modulating the strain direction in the actuator layer of the laminated film. Furthermore, the laminated film has been used in a remote-controlled inchworm walker that can directly couple a color-changing skin with the robotic movements. Such remote-controlled, smart films may open up new application possibilities in soft robotics and wearable devices. |
---|