Cargando…

Knockdown of Rhotekin 2 expression suppresses proliferation and induces apoptosis in colon cancer cells

Colon cancer is one of the most common malignant tumors in the human body, ranking second as a gastrointestinal tumor. It has a high incidence in Europe, America and China and more than 1 million new cases of colon cancer are reported worldwide each year. The incidence of colon cancer in China has i...

Descripción completa

Detalles Bibliográficos
Autores principales: Pang, Xueqin, Li, Rui, Shi, Dongtao, Pan, Xudong, Ma, Chen, Zhang, Guangbo, Mu, Chuanyong, Chen, Weichang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727621/
https://www.ncbi.nlm.nih.gov/pubmed/29250187
http://dx.doi.org/10.3892/ol.2017.7182
Descripción
Sumario:Colon cancer is one of the most common malignant tumors in the human body, ranking second as a gastrointestinal tumor. It has a high incidence in Europe, America and China and more than 1 million new cases of colon cancer are reported worldwide each year. The incidence of colon cancer in China has increased from 12/0.1 million in the early 1970s to 56/0.1 million at present with an annual growth rate of 4.2%, which far exceeds the international level (2%). Rhotekin (RTKN) 2, a Rho-guanosine triphosphatase (GTPase) effector, has been reported to be anti-apoptotic. However, the molecular mechanism underlying the biological function of RTKN2 in colon cancer remains unknown. The present study investigated whether the mRNA expression level of RTKN2 was markedly higher in 30 human colon cancer specimens compared with adjacent non-cancerous tissues. The results showed that the protein expression level of RTKN2 was significantly higher in SW480 and HCT116 cells, compared with HIEC cells. Knockdown of RTKN2 in the SW480 and HCT116 colon cancer cells, by lentivirus-mediated RNA interference led to the notable inhibition of cell proliferation and cell cycle progression, by reducing the expression levels of the PCDA, Cyclin D1 and c-myc cell cycle-associated proteins. The inhibitory effect of RTKN2 silencing on the proliferation of colon cancer cells may be partially realized by inhibiting the Wnt/β-catenin signaling pathway. Furthermore, the silencing of RTKN2 in the cells induced apoptosis by reducing the expression level of Bax and increasing the expression level of Bcl2. These results show that RTKN2 is involved in the carcinogenesis and progression of human colon cancer, indicating that RTKN2 may be a molecular target in colon cancer therapy.