Cargando…
MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA–disease association prediction
BACKGROUND: Recently, as the research of microRNA (miRNA) continues, there are plenty of experimental evidences indicating that miRNA could be associated with various human complex diseases development and progression. Hence, it is necessary and urgent to pay more attentions to the relevant study of...
Autores principales: | Chen, Xing, Niu, Ya-Wei, Wang, Guang-Hui, Yan, Gui-Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727873/ https://www.ncbi.nlm.nih.gov/pubmed/29233191 http://dx.doi.org/10.1186/s12967-017-1340-3 |
Ejemplares similares
-
MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities
por: Xu, Da, et al.
Publicado: (2021) -
A Novel Computational Method for the Identification of Potential miRNA-Disease Association Based on Symmetric Non-negative Matrix Factorization and Kronecker Regularized Least Square
por: Zhao, Yan, et al.
Publicado: (2018) -
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
por: Zhang, Chunyuan, et al.
Publicado: (2016) -
How to apply the novel dynamic ARDL simulations (dynardl) and Kernel-based regularized least squares (krls)
por: Sarkodie, Samuel Asumadu, et al.
Publicado: (2020) -
LRLSHMDA: Laplacian Regularized Least Squares for Human Microbe–Disease Association prediction
por: Wang, Fan, et al.
Publicado: (2017)