Cargando…

UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis

Uncoupling Protein 1 (UCP1) plays a central role in non-shivering thermogenesis in brown fat; however, its role in beige fat remains unclear. Here we report a robust UCP1-independent thermogenic mechanism in beige fat that involves enhanced ATP-dependent Ca(2+) cycling by sarco/endoplasmic reticulum...

Descripción completa

Detalles Bibliográficos
Autores principales: Ikeda, Kenji, Kang, Qianqian, Yoneshiro, Takeshi, Camporez, Joao Paulo, Maki, Hiroko, Homma, Mayu, Shinoda, Kosaku, Chen, Yong, Lu, Xiaodan, Maretich, Pema, Tajima, Kazuki, Ajuwon, Kolapo M., Soga, Tomoyoshi, Kajimura, Shingo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727902/
https://www.ncbi.nlm.nih.gov/pubmed/29131158
http://dx.doi.org/10.1038/nm.4429
_version_ 1783285973823520768
author Ikeda, Kenji
Kang, Qianqian
Yoneshiro, Takeshi
Camporez, Joao Paulo
Maki, Hiroko
Homma, Mayu
Shinoda, Kosaku
Chen, Yong
Lu, Xiaodan
Maretich, Pema
Tajima, Kazuki
Ajuwon, Kolapo M.
Soga, Tomoyoshi
Kajimura, Shingo
author_facet Ikeda, Kenji
Kang, Qianqian
Yoneshiro, Takeshi
Camporez, Joao Paulo
Maki, Hiroko
Homma, Mayu
Shinoda, Kosaku
Chen, Yong
Lu, Xiaodan
Maretich, Pema
Tajima, Kazuki
Ajuwon, Kolapo M.
Soga, Tomoyoshi
Kajimura, Shingo
author_sort Ikeda, Kenji
collection PubMed
description Uncoupling Protein 1 (UCP1) plays a central role in non-shivering thermogenesis in brown fat; however, its role in beige fat remains unclear. Here we report a robust UCP1-independent thermogenic mechanism in beige fat that involves enhanced ATP-dependent Ca(2+) cycling by sarco/endoplasmic reticulum Ca(2+)-ATPase2b (SERCA2b) and ryanodine receptor 2 (RyR2). Inhibition of SERCA2b impairs UCP1-independent beige fat thermogenesis in humans and mice, as well as in pigs, a species that lacks a functional UCP1 protein. Conversely, enhanced Ca(2+) cycling by the activation of α1/β3-adrenergic receptors or the SERCA2b-RyR2 pathway stimulates UCP1-independent thermogenesis. In the absence of UCP1, beige fat dynamically expends glucose through enhanced glycolysis, tricarboxylic acid metabolism, and pyruvate dehydrogenase activity for ATP-dependent thermogenesis by the SERCA2b pathway; beige fat thereby functions as a “glucose-sink” and improves glucose tolerance independent of body-weight loss. Our study uncovers a non-canonical thermogenic mechanism by which beige fat controls whole-body energy homeostasis through Ca(2+) cycling.
format Online
Article
Text
id pubmed-5727902
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-57279022018-05-13 UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis Ikeda, Kenji Kang, Qianqian Yoneshiro, Takeshi Camporez, Joao Paulo Maki, Hiroko Homma, Mayu Shinoda, Kosaku Chen, Yong Lu, Xiaodan Maretich, Pema Tajima, Kazuki Ajuwon, Kolapo M. Soga, Tomoyoshi Kajimura, Shingo Nat Med Article Uncoupling Protein 1 (UCP1) plays a central role in non-shivering thermogenesis in brown fat; however, its role in beige fat remains unclear. Here we report a robust UCP1-independent thermogenic mechanism in beige fat that involves enhanced ATP-dependent Ca(2+) cycling by sarco/endoplasmic reticulum Ca(2+)-ATPase2b (SERCA2b) and ryanodine receptor 2 (RyR2). Inhibition of SERCA2b impairs UCP1-independent beige fat thermogenesis in humans and mice, as well as in pigs, a species that lacks a functional UCP1 protein. Conversely, enhanced Ca(2+) cycling by the activation of α1/β3-adrenergic receptors or the SERCA2b-RyR2 pathway stimulates UCP1-independent thermogenesis. In the absence of UCP1, beige fat dynamically expends glucose through enhanced glycolysis, tricarboxylic acid metabolism, and pyruvate dehydrogenase activity for ATP-dependent thermogenesis by the SERCA2b pathway; beige fat thereby functions as a “glucose-sink” and improves glucose tolerance independent of body-weight loss. Our study uncovers a non-canonical thermogenic mechanism by which beige fat controls whole-body energy homeostasis through Ca(2+) cycling. 2017-11-13 2017-12 /pmc/articles/PMC5727902/ /pubmed/29131158 http://dx.doi.org/10.1038/nm.4429 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Ikeda, Kenji
Kang, Qianqian
Yoneshiro, Takeshi
Camporez, Joao Paulo
Maki, Hiroko
Homma, Mayu
Shinoda, Kosaku
Chen, Yong
Lu, Xiaodan
Maretich, Pema
Tajima, Kazuki
Ajuwon, Kolapo M.
Soga, Tomoyoshi
Kajimura, Shingo
UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis
title UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis
title_full UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis
title_fullStr UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis
title_full_unstemmed UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis
title_short UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis
title_sort ucp1-independent signaling involving serca2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727902/
https://www.ncbi.nlm.nih.gov/pubmed/29131158
http://dx.doi.org/10.1038/nm.4429
work_keys_str_mv AT ikedakenji ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT kangqianqian ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT yoneshirotakeshi ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT camporezjoaopaulo ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT makihiroko ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT hommamayu ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT shinodakosaku ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT chenyong ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT luxiaodan ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT maretichpema ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT tajimakazuki ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT ajuwonkolapom ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT sogatomoyoshi ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis
AT kajimurashingo ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis