Cargando…
UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis
Uncoupling Protein 1 (UCP1) plays a central role in non-shivering thermogenesis in brown fat; however, its role in beige fat remains unclear. Here we report a robust UCP1-independent thermogenic mechanism in beige fat that involves enhanced ATP-dependent Ca(2+) cycling by sarco/endoplasmic reticulum...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727902/ https://www.ncbi.nlm.nih.gov/pubmed/29131158 http://dx.doi.org/10.1038/nm.4429 |
_version_ | 1783285973823520768 |
---|---|
author | Ikeda, Kenji Kang, Qianqian Yoneshiro, Takeshi Camporez, Joao Paulo Maki, Hiroko Homma, Mayu Shinoda, Kosaku Chen, Yong Lu, Xiaodan Maretich, Pema Tajima, Kazuki Ajuwon, Kolapo M. Soga, Tomoyoshi Kajimura, Shingo |
author_facet | Ikeda, Kenji Kang, Qianqian Yoneshiro, Takeshi Camporez, Joao Paulo Maki, Hiroko Homma, Mayu Shinoda, Kosaku Chen, Yong Lu, Xiaodan Maretich, Pema Tajima, Kazuki Ajuwon, Kolapo M. Soga, Tomoyoshi Kajimura, Shingo |
author_sort | Ikeda, Kenji |
collection | PubMed |
description | Uncoupling Protein 1 (UCP1) plays a central role in non-shivering thermogenesis in brown fat; however, its role in beige fat remains unclear. Here we report a robust UCP1-independent thermogenic mechanism in beige fat that involves enhanced ATP-dependent Ca(2+) cycling by sarco/endoplasmic reticulum Ca(2+)-ATPase2b (SERCA2b) and ryanodine receptor 2 (RyR2). Inhibition of SERCA2b impairs UCP1-independent beige fat thermogenesis in humans and mice, as well as in pigs, a species that lacks a functional UCP1 protein. Conversely, enhanced Ca(2+) cycling by the activation of α1/β3-adrenergic receptors or the SERCA2b-RyR2 pathway stimulates UCP1-independent thermogenesis. In the absence of UCP1, beige fat dynamically expends glucose through enhanced glycolysis, tricarboxylic acid metabolism, and pyruvate dehydrogenase activity for ATP-dependent thermogenesis by the SERCA2b pathway; beige fat thereby functions as a “glucose-sink” and improves glucose tolerance independent of body-weight loss. Our study uncovers a non-canonical thermogenic mechanism by which beige fat controls whole-body energy homeostasis through Ca(2+) cycling. |
format | Online Article Text |
id | pubmed-5727902 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-57279022018-05-13 UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis Ikeda, Kenji Kang, Qianqian Yoneshiro, Takeshi Camporez, Joao Paulo Maki, Hiroko Homma, Mayu Shinoda, Kosaku Chen, Yong Lu, Xiaodan Maretich, Pema Tajima, Kazuki Ajuwon, Kolapo M. Soga, Tomoyoshi Kajimura, Shingo Nat Med Article Uncoupling Protein 1 (UCP1) plays a central role in non-shivering thermogenesis in brown fat; however, its role in beige fat remains unclear. Here we report a robust UCP1-independent thermogenic mechanism in beige fat that involves enhanced ATP-dependent Ca(2+) cycling by sarco/endoplasmic reticulum Ca(2+)-ATPase2b (SERCA2b) and ryanodine receptor 2 (RyR2). Inhibition of SERCA2b impairs UCP1-independent beige fat thermogenesis in humans and mice, as well as in pigs, a species that lacks a functional UCP1 protein. Conversely, enhanced Ca(2+) cycling by the activation of α1/β3-adrenergic receptors or the SERCA2b-RyR2 pathway stimulates UCP1-independent thermogenesis. In the absence of UCP1, beige fat dynamically expends glucose through enhanced glycolysis, tricarboxylic acid metabolism, and pyruvate dehydrogenase activity for ATP-dependent thermogenesis by the SERCA2b pathway; beige fat thereby functions as a “glucose-sink” and improves glucose tolerance independent of body-weight loss. Our study uncovers a non-canonical thermogenic mechanism by which beige fat controls whole-body energy homeostasis through Ca(2+) cycling. 2017-11-13 2017-12 /pmc/articles/PMC5727902/ /pubmed/29131158 http://dx.doi.org/10.1038/nm.4429 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Ikeda, Kenji Kang, Qianqian Yoneshiro, Takeshi Camporez, Joao Paulo Maki, Hiroko Homma, Mayu Shinoda, Kosaku Chen, Yong Lu, Xiaodan Maretich, Pema Tajima, Kazuki Ajuwon, Kolapo M. Soga, Tomoyoshi Kajimura, Shingo UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis |
title | UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis |
title_full | UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis |
title_fullStr | UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis |
title_full_unstemmed | UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis |
title_short | UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis |
title_sort | ucp1-independent signaling involving serca2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727902/ https://www.ncbi.nlm.nih.gov/pubmed/29131158 http://dx.doi.org/10.1038/nm.4429 |
work_keys_str_mv | AT ikedakenji ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT kangqianqian ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT yoneshirotakeshi ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT camporezjoaopaulo ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT makihiroko ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT hommamayu ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT shinodakosaku ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT chenyong ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT luxiaodan ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT maretichpema ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT tajimakazuki ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT ajuwonkolapom ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT sogatomoyoshi ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis AT kajimurashingo ucp1independentsignalinginvolvingserca2bmediatedcalciumcyclingregulatesbeigefatthermogenesisandsystemicglucosehomeostasis |