Cargando…

Neutrophil extracellular traps are downregulated by glucocorticosteroids in lungs in an equine model of asthma

BACKGROUND: Severe neutrophilic asthma is poorly responsive to glucocorticosteroids (GC). Neutrophil extracellular traps (NETs) within the lungs have been associated with the severity of airway obstruction and inflammation in asthma, and were found to be unaffected by GC in vitro. As IL-17 is overex...

Descripción completa

Detalles Bibliográficos
Autores principales: Vargas, Amandine, Boivin, Roxane, Cano, Patricia, Murcia, Yoana, Bazin, Isabelle, Lavoie, Jean-Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727947/
https://www.ncbi.nlm.nih.gov/pubmed/29233147
http://dx.doi.org/10.1186/s12931-017-0689-4
Descripción
Sumario:BACKGROUND: Severe neutrophilic asthma is poorly responsive to glucocorticosteroids (GC). Neutrophil extracellular traps (NETs) within the lungs have been associated with the severity of airway obstruction and inflammation in asthma, and were found to be unaffected by GC in vitro. As IL-17 is overexpressed in neutrophilic asthma and contributes to steroid insensitivity in different cell types, we hypothesized that NETs formation in asthmatic airways would be resistant to GC through an IL-17 mediated pathway. METHODS: Six neutrophilic severe asthmatic horses and six healthy controls were studied while being treated with dexamethasone. Lung function, bronchoalveolar lavage fluid (BALF) cytology and NETs formation, as well as the expression of CD11b and CD13 by blood and airway neutrophils were evaluated. The expression of IL-17 and its role in NETs formation were also studied. RESULTS: Airway neutrophils from asthmatic horses, as opposed to blood neutrophils, enhanced NETs formation, which was then decreased by GC. GC also tended to decrease the expression of CD11b in blood neutrophils, but not in airway neutrophils. IL-17 mRNA was increased in BALF cells of asthmatic horses and was unaffected by GC. However, both GC and IL-17 inhibited NETs formation in vitro. CONCLUSION: GC decreased NETs formation in vitro and also in vivo in the lungs of asthmatic horses. However, airway neutrophil activation during asthmatic inflammation was otherwise relatively insensitive to GC. The contribution of IL-17 to these responses requires further study. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12931-017-0689-4) contains supplementary material, which is available to authorized users.