Cargando…
Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data
In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the pro...
Autor principal: | Ye, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5728507/ https://www.ncbi.nlm.nih.gov/pubmed/29236718 http://dx.doi.org/10.1371/journal.pone.0188746 |
Ejemplares similares
-
Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization
por: Cui, Huanqing, et al.
Publicado: (2017) -
Enhanced Comprehensive Learning Particle Swarm Optimization with Dimensional Independent and Adaptive Parameters
por: Yu, Xiang, et al.
Publicado: (2021) -
Selectively-informed particle swarm optimization
por: Gao, Yang, et al.
Publicado: (2015) -
Particle Swarm Optimization with Scale-Free Interactions
por: Liu, Chen, et al.
Publicado: (2014) -
Coupled jumping frogs/particle swarm optimization for estimating the parameters of three dimensional HIV model
por: Kamalanand, K, et al.
Publicado: (2012)