Cargando…
Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation
Embryonic muscle development and fibre type differentiation has always been a topic of great importance due to its impact on both human health and farm animal financial values. Myozenin3 (Myoz3) is an important candidate gene that may regulate these processes. In the current study, we knocked down a...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5728575/ https://www.ncbi.nlm.nih.gov/pubmed/29236749 http://dx.doi.org/10.1371/journal.pone.0189476 |
_version_ | 1783286049489813504 |
---|---|
author | Ye, Maosen Ye, Fei He, Liutao Luo, Bin Yang, Fuling Cui, Can Zhao, Xiaoling Yin, Huadong Li, Diyan Xu, Hengyong Wang, Yan Zhu, Qing |
author_facet | Ye, Maosen Ye, Fei He, Liutao Luo, Bin Yang, Fuling Cui, Can Zhao, Xiaoling Yin, Huadong Li, Diyan Xu, Hengyong Wang, Yan Zhu, Qing |
author_sort | Ye, Maosen |
collection | PubMed |
description | Embryonic muscle development and fibre type differentiation has always been a topic of great importance due to its impact on both human health and farm animal financial values. Myozenin3 (Myoz3) is an important candidate gene that may regulate these processes. In the current study, we knocked down and overexpressed Myoz3 in chicken embryonic fibroblasts (CEFs) and chicken myoblasts, then utilized RNA-seq technology to screen genes, pathways and biological processes associated with Myoz3. Multiple differentially expressed genes were identified, including MYH10, MYLK2, NFAM1, MYL4, MYL9, PDZLIM1; those can in turn regulate each other and influence the development of muscle fibres. Gene ontology (GO) terms including some involved in positive regulation of cell proliferation were enriched. We further validated our results by testing the activity of cells by cell counting kit-8(CCK-8) and confirmed that under the condition of Myoz3 overexpression, the proliferation rate of CEFs and myoblasts was significantly upregulated, in addition, expression level of fast muscle specific gene was also significantly upregulated in myoblasts. Pathway enrichment analysis revealed that the PPAR (Peroxisome Proliferator-Activated Receptor) pathway was enriched, suggesting the possibility that Myoz3 regulates muscle fibre development and differentiation through the PPAR pathway. Our results provide valuable evidence regarding the regulatory functions of Myoz3 in embryonic cells by screening multiple candidate genes, biological processes and pathways associated with Myoz3. |
format | Online Article Text |
id | pubmed-5728575 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57285752017-12-22 Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation Ye, Maosen Ye, Fei He, Liutao Luo, Bin Yang, Fuling Cui, Can Zhao, Xiaoling Yin, Huadong Li, Diyan Xu, Hengyong Wang, Yan Zhu, Qing PLoS One Research Article Embryonic muscle development and fibre type differentiation has always been a topic of great importance due to its impact on both human health and farm animal financial values. Myozenin3 (Myoz3) is an important candidate gene that may regulate these processes. In the current study, we knocked down and overexpressed Myoz3 in chicken embryonic fibroblasts (CEFs) and chicken myoblasts, then utilized RNA-seq technology to screen genes, pathways and biological processes associated with Myoz3. Multiple differentially expressed genes were identified, including MYH10, MYLK2, NFAM1, MYL4, MYL9, PDZLIM1; those can in turn regulate each other and influence the development of muscle fibres. Gene ontology (GO) terms including some involved in positive regulation of cell proliferation were enriched. We further validated our results by testing the activity of cells by cell counting kit-8(CCK-8) and confirmed that under the condition of Myoz3 overexpression, the proliferation rate of CEFs and myoblasts was significantly upregulated, in addition, expression level of fast muscle specific gene was also significantly upregulated in myoblasts. Pathway enrichment analysis revealed that the PPAR (Peroxisome Proliferator-Activated Receptor) pathway was enriched, suggesting the possibility that Myoz3 regulates muscle fibre development and differentiation through the PPAR pathway. Our results provide valuable evidence regarding the regulatory functions of Myoz3 in embryonic cells by screening multiple candidate genes, biological processes and pathways associated with Myoz3. Public Library of Science 2017-12-13 /pmc/articles/PMC5728575/ /pubmed/29236749 http://dx.doi.org/10.1371/journal.pone.0189476 Text en © 2017 Ye et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ye, Maosen Ye, Fei He, Liutao Luo, Bin Yang, Fuling Cui, Can Zhao, Xiaoling Yin, Huadong Li, Diyan Xu, Hengyong Wang, Yan Zhu, Qing Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation |
title | Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation |
title_full | Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation |
title_fullStr | Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation |
title_full_unstemmed | Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation |
title_short | Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation |
title_sort | transcriptomic analysis of chicken myozenin 3 regulation reveals its potential role in cell proliferation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5728575/ https://www.ncbi.nlm.nih.gov/pubmed/29236749 http://dx.doi.org/10.1371/journal.pone.0189476 |
work_keys_str_mv | AT yemaosen transcriptomicanalysisofchickenmyozenin3regulationrevealsitspotentialroleincellproliferation AT yefei transcriptomicanalysisofchickenmyozenin3regulationrevealsitspotentialroleincellproliferation AT heliutao transcriptomicanalysisofchickenmyozenin3regulationrevealsitspotentialroleincellproliferation AT luobin transcriptomicanalysisofchickenmyozenin3regulationrevealsitspotentialroleincellproliferation AT yangfuling transcriptomicanalysisofchickenmyozenin3regulationrevealsitspotentialroleincellproliferation AT cuican transcriptomicanalysisofchickenmyozenin3regulationrevealsitspotentialroleincellproliferation AT zhaoxiaoling transcriptomicanalysisofchickenmyozenin3regulationrevealsitspotentialroleincellproliferation AT yinhuadong transcriptomicanalysisofchickenmyozenin3regulationrevealsitspotentialroleincellproliferation AT lidiyan transcriptomicanalysisofchickenmyozenin3regulationrevealsitspotentialroleincellproliferation AT xuhengyong transcriptomicanalysisofchickenmyozenin3regulationrevealsitspotentialroleincellproliferation AT wangyan transcriptomicanalysisofchickenmyozenin3regulationrevealsitspotentialroleincellproliferation AT zhuqing transcriptomicanalysisofchickenmyozenin3regulationrevealsitspotentialroleincellproliferation |