Cargando…
Machine learning unifies the modeling of materials and molecules
Determining the stability of molecules and condensed phases is the cornerstone of atomistic modeling, underpinning our understanding of chemical and materials properties and transformations. We show that a machine-learning model, based on a local description of chemical environments and Bayesian sta...
Autores principales: | Bartók, Albert P., De, Sandip, Poelking, Carl, Bernstein, Noam, Kermode, James R., Csányi, Gábor, Ceriotti, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729016/ https://www.ncbi.nlm.nih.gov/pubmed/29242828 http://dx.doi.org/10.1126/sciadv.1701816 |
Ejemplares similares
-
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021) -
Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon
por: Bernstein, Noam, et al.
Publicado: (2019) -
Chemical shifts in molecular solids by machine learning
por: Paruzzo, Federico M., et al.
Publicado: (2018) -
Machine learning for the structure–energy–property landscapes of molecular crystals
por: Musil, Félix, et al.
Publicado: (2017) -
Machine learning in chemical reaction space
por: Stocker, Sina, et al.
Publicado: (2020)