Cargando…
Can human experts predict solubility better than computers?
In this study, we design and carry out a survey, asking human experts to predict the aqueous solubility of druglike organic compounds. We investigate whether these experts, drawn largely from the pharmaceutical industry and academia, can match or exceed the predictive power of algorithms. Alongside...
Autores principales: | Boobier, Samuel, Osbourn, Anne, Mitchell, John B. O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729181/ https://www.ncbi.nlm.nih.gov/pubmed/29238891 http://dx.doi.org/10.1186/s13321-017-0250-y |
Ejemplares similares
-
Machine learning with physicochemical relationships: solubility prediction in organic solvents and water
por: Boobier, Samuel, et al.
Publicado: (2020) -
Reproducibility in cheminformatics and computational chemistry research: certainly we can do better than this
por: Landrum, Gregory A
Publicado: (2013) -
Using deep learning to predict outcomes of legal appeals better than human experts: A study with data from Brazilian federal courts
por: Jacob de Menezes-Neto, Elias, et al.
Publicado: (2022) -
Can Machine Learning Be Better than Biased Readers?
por: Hibi, Atsuhiro, et al.
Publicado: (2023) -
The self-assessment trap: can we all be better than average?
por: Norel, Raquel, et al.
Publicado: (2011)