Cargando…
Human microglia and astrocytes constitutively express the neurokinin-1 receptor and functionally respond to substance P
BACKGROUND: The tachykinin substance P (SP) is recognized to exacerbate inflammation at peripheral sites via its target receptor, neurokinin 1 receptor (NK-1R), expressed by leukocytes. More recently, SP/NK-1R interactions have been associated with severe neuroinflammation and neuronal damage. We ha...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729418/ https://www.ncbi.nlm.nih.gov/pubmed/29237453 http://dx.doi.org/10.1186/s12974-017-1012-5 |
Sumario: | BACKGROUND: The tachykinin substance P (SP) is recognized to exacerbate inflammation at peripheral sites via its target receptor, neurokinin 1 receptor (NK-1R), expressed by leukocytes. More recently, SP/NK-1R interactions have been associated with severe neuroinflammation and neuronal damage. We have previously demonstrated that NK-1R antagonists can limit neuroinflammatory damage in a mouse model of bacterial meningitis. Furthermore, we have since shown that these agents can attenuate bacteria-induced neuronal and glial inflammatory mediator production in nonhuman primate (NHP) brain explants and isolated neuronal cells, and following in vivo infection. METHODS: In the present study, we have assessed the ability of NHP brain explants, primary human microglia and astrocytes, and immortalized human glial cell lines to express NK-1R isoforms. We have utilized RT-PCR, immunoblot analysis, immunofluorescent microscopy, and/or flow cytometric analysis, to quantify NK-1R expression in each, at rest, or following bacterial challenge. Furthermore, we have assessed the ability of human microglia to respond to SP by immunoblot analysis of NF-kB nuclear translocation and determined the ability of this neuropeptide to augment inflammatory cytokine release and neurotoxic mediator production by human astrocytes using an ELISA and a neuronal cell toxicity assay, respectively. RESULTS: We demonstrate that human microglial and astrocytic cells as well as NHP brain tissue constitutively express robust levels of the full-length NK-1R isoform. In addition, we demonstrate that the expression of NK-1R by human astrocytes can be further elevated following exposure to disparate bacterial pathogens or their components. Importantly, we have demonstrated that NK-1R is functional in both human microglia and astrocytes and show that SP can augment the inflammatory and/or neurotoxic immune responses of glial cells to disparate and clinically relevant bacterial pathogens. CONCLUSIONS: The robust constitutive and functional expression of the full-length NK-1R isoform by human microglia and astrocytes, and the ability of SP to augment inflammatory signaling pathways and mediator production by these cells, support the contention that SP/NK-1R interactions play a significant role in the damaging neuroinflammation associated with conditions such as bacterial meningitis. |
---|