Cargando…
Estimating drivers of cell state transitions using gene regulatory network models
BACKGROUND: Specific cellular states are often associated with distinct gene expression patterns. These states are plastic, changing during development, or in the transition from health to disease. One relatively simple extension of this concept is to recognize that we can classify different cell-ty...
Autores principales: | Schlauch, Daniel, Glass, Kimberly, Hersh, Craig P., Silverman, Edwin K., Quackenbush, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729420/ https://www.ncbi.nlm.nih.gov/pubmed/29237467 http://dx.doi.org/10.1186/s12918-017-0517-y |
Ejemplares similares
-
Estimating gene regulatory networks with pandaR
por: Schlauch, Daniel, et al.
Publicado: (2017) -
Estimating Sample-Specific Regulatory Networks
por: Kuijjer, Marieke Lydia, et al.
Publicado: (2019) -
Predicting genotype-specific gene regulatory networks
por: Weighill, Deborah, et al.
Publicado: (2022) -
gpuZoo: Cost-effective estimation of gene regulatory networks using the Graphics Processing Unit
por: Guebila, Marouen Ben, et al.
Publicado: (2022) -
Constructing gene regulatory networks using epigenetic data
por: Sonawane, Abhijeet Rajendra, et al.
Publicado: (2021)