Cargando…
Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo
Structural alterations in long‐range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non‐systematic. Harnessing...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729634/ https://www.ncbi.nlm.nih.gov/pubmed/28512761 http://dx.doi.org/10.1002/hbm.23639 |
_version_ | 1783286225563549696 |
---|---|
author | Abivardi, Aslan Bach, Dominik R. |
author_facet | Abivardi, Aslan Bach, Dominik R. |
author_sort | Abivardi, Aslan |
collection | PubMed |
description | Structural alterations in long‐range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non‐systematic. Harnessing diffusion‐weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1‐weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non‐human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white‐matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non‐human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927–3940, 2017. © 2017 Wiley Periodicals, Inc. |
format | Online Article Text |
id | pubmed-5729634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-57296342017-12-22 Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo Abivardi, Aslan Bach, Dominik R. Hum Brain Mapp Research Articles Structural alterations in long‐range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non‐systematic. Harnessing diffusion‐weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1‐weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non‐human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white‐matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non‐human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927–3940, 2017. © 2017 Wiley Periodicals, Inc. John Wiley and Sons Inc. 2017-05-17 /pmc/articles/PMC5729634/ /pubmed/28512761 http://dx.doi.org/10.1002/hbm.23639 Text en © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Abivardi, Aslan Bach, Dominik R. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo |
title | Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo |
title_full | Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo |
title_fullStr | Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo |
title_full_unstemmed | Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo |
title_short | Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo |
title_sort | deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729634/ https://www.ncbi.nlm.nih.gov/pubmed/28512761 http://dx.doi.org/10.1002/hbm.23639 |
work_keys_str_mv | AT abivardiaslan deconstructingwhitematterconnectivityofhumanamygdalanucleiwiththalamusandcortexsubdivisionsinvivo AT bachdominikr deconstructingwhitematterconnectivityofhumanamygdalanucleiwiththalamusandcortexsubdivisionsinvivo |