Cargando…
The influence of organic matter content and media compaction on the dispersal of entomopathogenic nematodes with different foraging strategies
In laboratory experiments, we investigated how media with varying ratio of peat:sand and two levels of compaction influence dispersal success of entomopathogenic nematode (EPN) species with different foraging strategies: Steinernema carpocapsae (ambusher), Heterorhabditis downesi (cruiser) and Stein...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729850/ https://www.ncbi.nlm.nih.gov/pubmed/28805166 http://dx.doi.org/10.1017/S0031182017001317 |
Sumario: | In laboratory experiments, we investigated how media with varying ratio of peat:sand and two levels of compaction influence dispersal success of entomopathogenic nematode (EPN) species with different foraging strategies: Steinernema carpocapsae (ambusher), Heterorhabditis downesi (cruiser) and Steinernema feltiae (intermediate). Success was measured by the numbers of nematodes moving through a 4 cm column and invading a wax moth larva. We found that both compaction and increasing peat content generally decreased EPN infective juvenile (IJ) success for all three species. Of the three species, H. downesi was the least affected by peat content, and S. carpocapsae was the most adversely influenced by compaction. In addition, sex ratios of the invading IJs of the two Steinernema species were differentially influenced by peat content, and in the case of S. feltiae, sex ratio was also affected by compaction. This indicates that dispersal of male and female IJs is differentially affected by soil parameters and that this differentiation is species-specific. In conclusion, our study shows that organic matter: sand ratio and soil compaction have a marked influence on EPN foraging behaviour with implications for harnessing them as biological pest control agents. |
---|