Cargando…
Ornithine decarboxylase as a therapeutic target for endometrial cancer
Ornithine Decarboxylase (ODC) a key enzyme in polyamine biosynthesis is often overexpressed in cancers and contributes to polyamine-induced cell proliferation. We noted ubiquitous expression of ODC1 in our published endometrial cancer gene array data and confirmed this in the cancer genome atlas (TC...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730160/ https://www.ncbi.nlm.nih.gov/pubmed/29240775 http://dx.doi.org/10.1371/journal.pone.0189044 |
_version_ | 1783286308496474112 |
---|---|
author | Kim, Hong Im Schultz, Chad R. Buras, Andrea L. Friedman, Elizabeth Fedorko, Alyssa Seamon, Leigh Chandramouli, Gadisetti V. R. Maxwell, G. Larry Bachmann, André S. Risinger, John I. |
author_facet | Kim, Hong Im Schultz, Chad R. Buras, Andrea L. Friedman, Elizabeth Fedorko, Alyssa Seamon, Leigh Chandramouli, Gadisetti V. R. Maxwell, G. Larry Bachmann, André S. Risinger, John I. |
author_sort | Kim, Hong Im |
collection | PubMed |
description | Ornithine Decarboxylase (ODC) a key enzyme in polyamine biosynthesis is often overexpressed in cancers and contributes to polyamine-induced cell proliferation. We noted ubiquitous expression of ODC1 in our published endometrial cancer gene array data and confirmed this in the cancer genome atlas (TCGA) with highest expression in non-endometrioid, high grade, and copy number high cancers, which have the worst clinical outcomes. ODC1 expression was associated with worse overall survival and increased recurrence in three endometrial cancer gene expression datasets. Importantly, we confirmed these findings using quantitative real-time polymerase chain reaction (qRT-PCR) in a validation cohort of 60 endometrial cancers and found that endometrial cancers with elevated ODC1 had significantly shorter recurrence-free intervals (KM log-rank p = 0.0312, Wald test p = 5.59e-05). Difluoromethylornithine (DFMO) a specific inhibitor of ODC significantly reduced cell proliferation, cell viability, and colony formation in cell line models derived from undifferentiated, endometrioid, serous, carcinosarcoma (mixed mesodermal tumor; MMT) and clear cell endometrial cancers. DFMO also significantly reduced human endometrial cancer ACI-98 tumor burden in mice compared to controls (p = 0.0023). ODC-regulated polyamines (putrescine [Put] and/or spermidine [Spd]) known activators of cell proliferation were strongly decreased in response to DFMO, in both tumor tissue ([Put] (p = 0.0006), [Spd] (p<0.0001)) and blood plasma ([Put] (p<0.0001), [Spd] (p = 0.0049)) of treated mice. Our study indicates that some endometrial cancers appear particularly sensitive to DFMO and that the polyamine pathway in endometrial cancers in general and specifically those most likely to suffer adverse clinical outcomes could be targeted for effective treatment, chemoprevention or chemoprevention of recurrence. |
format | Online Article Text |
id | pubmed-5730160 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57301602017-12-22 Ornithine decarboxylase as a therapeutic target for endometrial cancer Kim, Hong Im Schultz, Chad R. Buras, Andrea L. Friedman, Elizabeth Fedorko, Alyssa Seamon, Leigh Chandramouli, Gadisetti V. R. Maxwell, G. Larry Bachmann, André S. Risinger, John I. PLoS One Research Article Ornithine Decarboxylase (ODC) a key enzyme in polyamine biosynthesis is often overexpressed in cancers and contributes to polyamine-induced cell proliferation. We noted ubiquitous expression of ODC1 in our published endometrial cancer gene array data and confirmed this in the cancer genome atlas (TCGA) with highest expression in non-endometrioid, high grade, and copy number high cancers, which have the worst clinical outcomes. ODC1 expression was associated with worse overall survival and increased recurrence in three endometrial cancer gene expression datasets. Importantly, we confirmed these findings using quantitative real-time polymerase chain reaction (qRT-PCR) in a validation cohort of 60 endometrial cancers and found that endometrial cancers with elevated ODC1 had significantly shorter recurrence-free intervals (KM log-rank p = 0.0312, Wald test p = 5.59e-05). Difluoromethylornithine (DFMO) a specific inhibitor of ODC significantly reduced cell proliferation, cell viability, and colony formation in cell line models derived from undifferentiated, endometrioid, serous, carcinosarcoma (mixed mesodermal tumor; MMT) and clear cell endometrial cancers. DFMO also significantly reduced human endometrial cancer ACI-98 tumor burden in mice compared to controls (p = 0.0023). ODC-regulated polyamines (putrescine [Put] and/or spermidine [Spd]) known activators of cell proliferation were strongly decreased in response to DFMO, in both tumor tissue ([Put] (p = 0.0006), [Spd] (p<0.0001)) and blood plasma ([Put] (p<0.0001), [Spd] (p = 0.0049)) of treated mice. Our study indicates that some endometrial cancers appear particularly sensitive to DFMO and that the polyamine pathway in endometrial cancers in general and specifically those most likely to suffer adverse clinical outcomes could be targeted for effective treatment, chemoprevention or chemoprevention of recurrence. Public Library of Science 2017-12-14 /pmc/articles/PMC5730160/ /pubmed/29240775 http://dx.doi.org/10.1371/journal.pone.0189044 Text en © 2017 Kim et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kim, Hong Im Schultz, Chad R. Buras, Andrea L. Friedman, Elizabeth Fedorko, Alyssa Seamon, Leigh Chandramouli, Gadisetti V. R. Maxwell, G. Larry Bachmann, André S. Risinger, John I. Ornithine decarboxylase as a therapeutic target for endometrial cancer |
title | Ornithine decarboxylase as a therapeutic target for endometrial cancer |
title_full | Ornithine decarboxylase as a therapeutic target for endometrial cancer |
title_fullStr | Ornithine decarboxylase as a therapeutic target for endometrial cancer |
title_full_unstemmed | Ornithine decarboxylase as a therapeutic target for endometrial cancer |
title_short | Ornithine decarboxylase as a therapeutic target for endometrial cancer |
title_sort | ornithine decarboxylase as a therapeutic target for endometrial cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730160/ https://www.ncbi.nlm.nih.gov/pubmed/29240775 http://dx.doi.org/10.1371/journal.pone.0189044 |
work_keys_str_mv | AT kimhongim ornithinedecarboxylaseasatherapeutictargetforendometrialcancer AT schultzchadr ornithinedecarboxylaseasatherapeutictargetforendometrialcancer AT burasandreal ornithinedecarboxylaseasatherapeutictargetforendometrialcancer AT friedmanelizabeth ornithinedecarboxylaseasatherapeutictargetforendometrialcancer AT fedorkoalyssa ornithinedecarboxylaseasatherapeutictargetforendometrialcancer AT seamonleigh ornithinedecarboxylaseasatherapeutictargetforendometrialcancer AT chandramouligadisettivr ornithinedecarboxylaseasatherapeutictargetforendometrialcancer AT maxwellglarry ornithinedecarboxylaseasatherapeutictargetforendometrialcancer AT bachmannandres ornithinedecarboxylaseasatherapeutictargetforendometrialcancer AT risingerjohni ornithinedecarboxylaseasatherapeutictargetforendometrialcancer |